yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Inflection points (graphical) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We're told let G be a differentiable function defined over the closed interval from 4 to 4. The graph of G is given right over here, given below. How many inflection points does the graph of G have?

So let's just remind ourselves what are inflection points. Inflection points are where we change concavity.

So we go from concave upwards to concave downwards or concave downwards to concave upwards.

Another way you could think about it is that we're going from our slope increasing to our slope decreasing, or the other way around. Any points where your slope goes from decreasing to increasing.

So let's think about that. As we start off right over here, at the extreme left, it seems like we have a very high slope. It's a very steep curve, and then it stays increasing, but it's getting less positive.

So it's getting a little bit flatter. Our slope is at a very high level, but it's decreasing, decreasing, decreasing. The slope is increasing, decreasing even more, it's even more.

Then it’s actually going to zero; our slope is zero, and then it becomes negative. So our slope is still decreasing, and then it's becoming more and more negative.

Then right around here, it looks like it starts becoming less negative, or it starts increasing. So our slope is increasing; it's really just becoming less and less negative.

Then it’s going close to zero, approaching zero. It looks like our slope is zero right over here, but then it looks like right over there our slope begins decreasing again.

So it looks like our slope is decreasing again; it’s becoming more and more negative. It seems like something interesting happened right over there; we had a transition point.

Then right around here, it looks like it starts; the slope starts increasing again. So it looks like the slope starts increasing; it's negative, but it's becoming less and less and less negative.

Then it becomes zero, and then it becomes positive, and then more and more and more and more positive. So, inflection points are where we go from slope increasing to slope decreasing, so concave upwards to concave downwards.

This was an inflection point, and also from slope decreasing to slope increasing. So that's slope decreasing to slope increasing, and this is also slope decreasing to slope increasing.

So how many inflection points does the graph of G have? We can see that we've on this graph, well, it has three over the interval that at least we can see.

More Articles

View All
Kevin O'Leary Visits Longines Boutique | Teddy Baldassarre
[Music] Every time I go out shopping with Teddy, I end up with another bad influence. It’s very bad. Interesting! I’m buying it right here. That’s how her he is. Oh, sorry Howard, never mind! You got the aviation baby. What should you do? [Music] Mr. Wo…
How To Go From Startup Dream To Reality
There’s a moment in a Founder’s brain when you know your startup is gonna die. You see the future, but the future is looking like darkness. In the movie Encanto, there’s a magical character named Bruno who can tell the future, but it’s always bad news. W…
Happiness Without Material Comfort Is Playing on Hard Mode
Even though you can certainly achieve happiness and mental health without financial health, the truth is in modern society, most of us understand that financial wealth can give us freedom. It can give us time. It can give us peace. You’re not gonna buy yo…
Gradient and graphs
So here I’d like to talk about what the gradient means in the context of the graph of a function. In the last video, I defined the gradient, um, but let me just take a function here. The one that I have graphed is (x^2 + y^2) (f of xy = (x^2 + y^2)). So,…
Geometric constructions: perpendicular line through a point off the line | Geometry | Khan Academy
What I have here is a line, and I have a point that is not on that line. My goal is to draw a new line that goes through this point and is perpendicular to my original line. How do I do that? Well, you might imagine that our compass will come in handy; i…
Michael REVEALED !!!!
Hey, Vsauce! Michael here, and I’m flying to Dallas today to see my sister. But until then, I thought it might be fun to show you a handful of the over 200 videos I made before Vsauce. That way, you can get to know me a little bit more intimately. The fi…