yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Inflection points (graphical) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We're told let G be a differentiable function defined over the closed interval from 4 to 4. The graph of G is given right over here, given below. How many inflection points does the graph of G have?

So let's just remind ourselves what are inflection points. Inflection points are where we change concavity.

So we go from concave upwards to concave downwards or concave downwards to concave upwards.

Another way you could think about it is that we're going from our slope increasing to our slope decreasing, or the other way around. Any points where your slope goes from decreasing to increasing.

So let's think about that. As we start off right over here, at the extreme left, it seems like we have a very high slope. It's a very steep curve, and then it stays increasing, but it's getting less positive.

So it's getting a little bit flatter. Our slope is at a very high level, but it's decreasing, decreasing, decreasing. The slope is increasing, decreasing even more, it's even more.

Then it’s actually going to zero; our slope is zero, and then it becomes negative. So our slope is still decreasing, and then it's becoming more and more negative.

Then right around here, it looks like it starts becoming less negative, or it starts increasing. So our slope is increasing; it's really just becoming less and less negative.

Then it’s going close to zero, approaching zero. It looks like our slope is zero right over here, but then it looks like right over there our slope begins decreasing again.

So it looks like our slope is decreasing again; it’s becoming more and more negative. It seems like something interesting happened right over there; we had a transition point.

Then right around here, it looks like it starts; the slope starts increasing again. So it looks like the slope starts increasing; it's negative, but it's becoming less and less and less negative.

Then it becomes zero, and then it becomes positive, and then more and more and more and more positive. So, inflection points are where we go from slope increasing to slope decreasing, so concave upwards to concave downwards.

This was an inflection point, and also from slope decreasing to slope increasing. So that's slope decreasing to slope increasing, and this is also slope decreasing to slope increasing.

So how many inflection points does the graph of G have? We can see that we've on this graph, well, it has three over the interval that at least we can see.

More Articles

View All
“Let Them Scream Whatever They Want” | Marcus Aurelius on Panic
How should we act when people around us are panicking? And how can we avoid panicking ourselves? Panic gets us nowhere, as it is a state of emotional turmoil during which our rationality is thrown overboard. So when we’re faced with a wide variety of opin…
Ionization energy trends | Atomic models and periodicity | High school chemistry | Khan Academy
We’re now going to think about ionization energy trends. What’s ionization energy? It’s the energy required to remove the highest energy electron from an atom. To think about this, let’s look at some data. So right over here is ionization energy plotted …
BREAKING NEWS: President Donald Trump Signs His First Executive Orders At The Capitol
Great. We went to the helicopter. It was freezing. Sun is a little dece. Yeah, yes it is. So, what would you like us to do? Sign your official documents. Assume they’re going to be happy with these docs. Might be the tradition, sir. The first is 22 cabin…
Lecture 11 - Hiring and Culture, Part 2 (Patrick and John Collison, Ben Silbermann)
Part two of culture and team, and we have Ben Silberman, the founder of Pinterest, and John and Patrick Collison, the founders of Stripe. Um, founders that have obviously sort of some of the best in the world at thinking about culture and how they build t…
Kirsty Nathoo - Managing Startup Finances
Morning everybody! Thank you for coming in at 9 o’clock. It’s an early start. So, as Kevin mentioned, my name is Kirsty Nathu, and I’m the CFO here at Y Combinator. So, I’ve actually helped now 2,000 companies, almost, as they’ve come through Y Combinato…
The Dred Scott case and citizenship | Citizenship | High school civics | Khan Academy
In this video, I want to give you a very brief overview of Dred Scott vs. Sanford, a Supreme Court decision made in 1857 that had major consequences on the definition of citizenship in the United States. This case was tied up with so many of the questions…