yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Inflection points (graphical) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We're told let G be a differentiable function defined over the closed interval from 4 to 4. The graph of G is given right over here, given below. How many inflection points does the graph of G have?

So let's just remind ourselves what are inflection points. Inflection points are where we change concavity.

So we go from concave upwards to concave downwards or concave downwards to concave upwards.

Another way you could think about it is that we're going from our slope increasing to our slope decreasing, or the other way around. Any points where your slope goes from decreasing to increasing.

So let's think about that. As we start off right over here, at the extreme left, it seems like we have a very high slope. It's a very steep curve, and then it stays increasing, but it's getting less positive.

So it's getting a little bit flatter. Our slope is at a very high level, but it's decreasing, decreasing, decreasing. The slope is increasing, decreasing even more, it's even more.

Then it’s actually going to zero; our slope is zero, and then it becomes negative. So our slope is still decreasing, and then it's becoming more and more negative.

Then right around here, it looks like it starts becoming less negative, or it starts increasing. So our slope is increasing; it's really just becoming less and less negative.

Then it’s going close to zero, approaching zero. It looks like our slope is zero right over here, but then it looks like right over there our slope begins decreasing again.

So it looks like our slope is decreasing again; it’s becoming more and more negative. It seems like something interesting happened right over there; we had a transition point.

Then right around here, it looks like it starts; the slope starts increasing again. So it looks like the slope starts increasing; it's negative, but it's becoming less and less and less negative.

Then it becomes zero, and then it becomes positive, and then more and more and more and more positive. So, inflection points are where we go from slope increasing to slope decreasing, so concave upwards to concave downwards.

This was an inflection point, and also from slope decreasing to slope increasing. So that's slope decreasing to slope increasing, and this is also slope decreasing to slope increasing.

So how many inflection points does the graph of G have? We can see that we've on this graph, well, it has three over the interval that at least we can see.

More Articles

View All
15 Reasons Persuasive People Always Get What They Want
No matter how hard you work at something, if you don’t know how to persuade people, you’re never going to get what you want. Hard work falls flat without the driving force of persuasion. Good persuasion skills beat hard work any day. That’s why a charisma…
Interpreting direction of motion from position-time graph | AP Calculus AB | Khan Academy
An object is moving along a line. The following graph gives the object’s position relative to its starting point over time. For each point on the graph, is the object moving forward, backward, or neither? So pause this video and try to figure that out. A…
The Best Ways The Rich Build a Recession-Proof Investment Portfolio
You know, Alexir, the rich come out almost unscathed during recessions. In fact, many come out in better shape than when the recession started. The world can shout about bailouts as loud as they want, but if you look deeper into it, you’ll see their growt…
The Genius of 3D Printed Rockets
This is the world’s largest 3D metal printer. It was built by Relativity Space, a startup that aims to print an entire rocket, including fuel tanks and rocket engines, in just 60 days. I’m like looking inside a 3D printed rocket that is actually gonna go …
Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy
Let’s see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity. So let’s just think about what’s going on in the numerator and then think about what’s going on in the denominator. In the numerator, we have (…
Shooting Down a Lost Drone and why Dogs Tilt their Heads - Smarter Every Day 173
Hey, it’s me Destin. Welcome back to Smarter Every Day! I’m in the middle of the woods. My son lost a cheap little drone, and the only way we can figure out where it’s at is we are powering it up and listening to where it is. It’s really got me thinking a…