yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
How to buy a $25,000,000 private jet!
Hey Steve, I have 25 million dollars and I want a jet from London to Dubai. No problem, we got a few we can choose from. Let’s take a look on the video. Let’s do it! 125 million dollars! How many passengers do you want to carry? It’s only me, I don’t h…
The Mani Tribe's Blowgun | Primal Survivor
[music playing] HAZEN AUDEL: The Mani have an unrivaled knowledge of the local plants and trees, relying on them for almost everything they need. [non-english speech] Huh? [non-english speech] [non-english speech] That one right there. [non-english speec…
Speaking the Language | Saints & Strangers
You’ll want them in my saucer. II Hello, catch! Working with the Aventa key language is a huge opportunity. It’s something that I welcomed with open arms. It was something that I felt was a responsibility as a native actor. And I can’t come to me! I ha…
Commodity money vs. Fiat money | Financial sector | AP Macroeconomics | Khan Academy
Let’s take a look at a United States one dollar bill. What is it that gives this thing value? You can give it to people and get back, you know, food that you can eat or things that you can use and things of hard value. But what is it about this little pie…
Warren Buffett Just Made a Huge Bet on a Hidden Stock.
Warren Buffett has very sneakily just made a rather sizable bet on a new stock, and it’s not your typical Buffett-style investment, like what he did last year with Activision Blizzard stock. Buffett has just placed another big Arbitrage bet that a certain…
The truly irregular verbs | The parts of speech | Grammar | Khan Academy
Hello Garans, welcome to the last and strangest part of the irregular verb: the truly irregular. Yes, friends, here I have compiled all the weirdest, all the wooliest, all the eeriest and spookiest forms of verbs that don’t otherwise fall into other categ…