yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
15 Ways To Grow Your Personality
Personality is more than just looks or manner of speech; it’s how you think, feel, and act that makes you unique. You have to do more than just read a few self-help books to develop a great character, but it is a great start. Personality lights you up in …
How Do Billion Dollar Startups Start?
Every founder looks at Airbnb and just imagines Airbnb in the early days must have been something special. Actually, they kind of all look the same. For founders just starting out, they think that the trajectory and the growth graph of all the successful …
Steve Jobs Insult Response - Highest Quality
Yes Mr. Jobs, you’re a bright and influential man. Here it comes. It’s sad and clear that on several counts you’ve discussed, you don’t know what you’re talking about. I would like for example for you to express in clear terms how, say Java in any of its …
15 Reasons Why Real Estate is the Best Investment
Halloway Luxor’s! We’re thrilled to have you back for another amazing Sunday motivational video, especially today when we’re breaking down why real estate is and has been the best go-to investment for building wealth. By the end of this one, you should ha…
Quick guide to the 2020 AP US History exam | AP US History | Khan Academy
Hey historians, Kim from Khan Academy here with a quick guide to the 2020 AP US History exam. I’m gonna go over the details about the new exam format and how the scoring system has changed. Okay, here’s what you need to know. First, the exam is taking pl…
Strategies for multiplying multi digit decimals
So in this video, we’re gonna try to think of ways to compute what 31.2 times 19 is. There are multiple ways to approach this, but like always, try to pause this video and see if you can work through this on your own. All right, now let’s do this togethe…