yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
How I Save 100% Of My Income
What’s up you guys? It’s Graham here. Sir, yes, the Tyler you read is correct. For the last several years, I have been able to save 100 percent of my income. Now, let me explain because I don’t live in a cardboard box off the one-on-one freeway. I don’t e…
Introduction to the semicolon | The Colon and semicolon | Punctuation | Khan Academy
Hello, Garans. In this video, I’m going to tell you about a piece of punctuation called the semicolon, which basically looks like a comma with a period on top of it. The semicolon has a few uses, but the basic sort of standard use is to link two closely r…
Worked examples: Forms & features of quadratic functions | High School Math | Khan Academy
The function M is given in three equivalent forms, which form most quickly reveals the Y intercept. So let’s just remind ourselves, if I have a function, the graph y is equal to M of x. These are all equivalent forms; they tell us that the function M is g…
Halloween and Neil deGrasse Tyson | StarTalk
I was never big into Halloween costumes. When I was a child, I had a costume, but I didn’t have so much invested in what it was or what it looked like that it became a part of my childhood memories. I grew up; my formative years were in a huge apartment …
Thank you for an amazing year!
That’s, that’s, I started selling jets over 40 years ago, and a lot has changed since those early days. But one thing I really didn’t see coming is this: me sharing my life to millions across the world and you guys tuning in week in and week out. It was …
Curvature formula, part 5
So let’s sum up where we are so far. We’re looking at this formula and trying to understand why it corresponds to curvature, why it tells you how much a curve actually curves. The first thing we did is we noticed that this numerator corresponds to a cert…