yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Outlasting the Enemy in Shok Valley | No Man Left Behind
On October 2nd of 2008, we received the mission to go conduct an operation in the northern province of Nurse T in Afghanistan. The mission was to conduct a raid on a high-value target. The plan was to infiltrate from the bottom of the valley and work our …
The 5 Secrets to making a TON of Money
What’s up, you guys? It’s Graham Years. So, when it comes to learning how to make more money, I’ve noticed a few major differences between the people who make a normal average income and the people who end up making a ton of money. And when I talk about …
Athlane (S19) - YC Tech Talks, Gaming 2020 (November 9, 2020)
Uh yeah, so like I said, I’m the co-founder of Athlane. And so if you’re at this talk, you’ve probably watched a live stream before. Oftentimes, what’s not captured in that stream is what these creators endure to deliver that viewership experience. Wheth…
Worked example: separable differential equation (with taking log of both sides) | Khan Academy
Let’s say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential…
Is Credit Suisse Triggering another 2008 Stock Market Crash?
I don’t know if you guys use Twitter to Snapchat with what’s going on in the finance world, but I probably checked Twitter maybe two or three times a day. Over the past week, one thing that’s been catching my attention is the amount of people talking abou…
Why Suffering is Beautiful | Emil Cioran’s Dark Philosophy
Romanian philosopher Emil Cioran observed that we live in a society that’s too afraid to confront the dark sides of existence. For example, we prefer to hide illness behind the thick walls of hospitals, and we avoid discussing death, as we see it as somet…