yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Watch: Inside the World's Longest Sea Caves | Expedition Raw
Okay, let’s go for it. I actually went to New Zealand to study the other side of the island. But to satisfy my curiosity, I started exploring this coastline, and that turned out to be the day that I actually discovered the longest sea cave in the world. …
Jorge Paulo Lemann on building a more equitable future in Brazil | Homeroom with Sal
Support all of you in other ways with daily class schedules to kind of approximate keeping the learning going on during the closures. Webinars for teachers and parents, and also this home room is really just a way to stay connected, talk to interesting pe…
Software Engineer Turned Youtuber - Jarvis Johnson
All right, welcome to the podcast. Thanks for having me. So today, Jarvis Johnson, who is a software engineer and YouTube creator. Yeah, recently independent. Yeah, it’s almost like the reverse now. Now I’m a YouTube creator and a software engineer. Ye…
Why India is a Rising Power
If you were to look at China and India, and those two countries specifically, um, and you were to handicap them, as you are uniquely qualified to do, maybe you could just broadly handicap India versus China for us. This is a topic we’ve been talking about…
Live for Today. Hope for Tomorrow.
Once there was a Chinese farmer who had a horse that he would tend his crops with every morning. One day, out of the blue, the horse ran off. All the villagers approached the farmer and offered their sympathies. “My, what bad luck you’ve had,” they echoe…
Dealing With Anger (A Stoic & Buddhist Perspective)
Of what use is anger when the same end can be arrived at by reason? Do you suppose that a hunter is angry with the beasts he kills? Seneca. Anger is an emotion that everyone experiences at some point in their lives. There are different ways in which ange…