yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Density curve worked example | Modeling data distributions | AP Statistics | Khan Academy
Consider the density curve below. It’s depicted right over here; it’s a little unusual looking. It looks more like a triangle than our standard density curves, but it’s valid. Which of the following statements are true? Choose all answers that apply: Th…
Diana Hu on Augmented Reality and Building a Startup in a New Market
All right, Diana! Whoo! Welcome to the podcast. Thank you for having me here. Correct, so maybe we should start from now and then go backward in time. So, you’re working on AR at Niantic after your company, Escher Reality, has been acquired. How did you s…
Multivariable chain rule intuition
So, in the last video, I introduced this multi-variable chain rule, and here, I want to explain a loose intuition for why it’s true, why you would expect something like this to happen. The way you think about an expression like this, you have this multiv…
We made a Video Game (FISH GAME) - Smarter Every Day 291
Hey, it’s me, Destin. Welcome back to Smarter Every Day. We made a video game. I was supposed to make a video here about, like, “Hey, this is the game, and you can buy it, and you can play it, and it’s awesome.” That was the original idea for this. But th…
$1 vs $500,000 Experiences!
I’m about to show you what a half $1 million experience looks like. I promise this is going to blow your mind. In this video, you will find out why it cost a quarter of $1 million to simulate going to space. Why it costs $50,000 to explore the depths of o…
Tagging Adorable, Nasty Little Penguins | Best Job Ever
One of the most consistent comments that I get is how adorable chinstrap penguins are. But every time you get near them, the very first thing that they do is projectile poop. They’re cantankerous; they tend to be very aggressive and just eat the food out …