yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
You Didn’t Know Mushrooms Could Do All This | National Geographic
There are so many things you can do with fungi, and this is what keeps us up at night. Fungi for food, medicine, textiles, fiber, packaging materials, even biofuel. Fungi just have this potential to unlock biological material that’s a waste product in our…
Backspin Basketball Flies Off Dam
Recently, some friends of mine went to the Gordon Dam in Tasmania, which is 126.5 meters (or 415 feet) high. Then they dropped a basketball over the edge. You can see that the basketball gets pushed around a bit by the breeze, but it lands basically right…
What's the World's Most Littered Plastic Item? Cigarette Butts | National Geographic
This routine is iconic, and let’s forget two health issues; that’s obvious. We’re gonna focus on this part right here. It seems that cigarette litter is the last acceptable form of littering. It’s also one of the most littered plastic items on this planet…
Homeroom with Sal & Chancellor Robert J. Jones - Thursday, September 3
Hi everyone! Welcome to our homeroom live stream. We have a very exciting conversation coming up. Sal here from Khan Academy. In case you all don’t know me, we’re gonna have a conversation with Chancellor Robert Jones from the University of Illinois at Ur…
Climbing Asia’s Forgotten Mountain, Part 1 | Nat Geo Live
It was harder than we anticipated and it was much, much colder. We’re a team of six people. Our goal is to determine what the highest peak in Burma is and then climb it. Like to solve this fantastic geographical mystery. It never let up, just taken down t…
How To Compete With Amazon and Google
Like how the hell does anyone compete with like one of the greatest companies of all time on the thing that they’re experts at, right? And it turned out that just like picking the right avocado was too big of a challenge for like this trillion dollar comp…