yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Why You Will Marry the Wrong Person
I’ve been asked to talk to you today about an essay that I wrote, uh, for the New York Times, um, last year, which went under a rather dramatic, uh, heading. Uh, it was called “Why You Will Marry the Wrong Person.” And perhaps we can just begin, um, we’re…
Life in Flight | Chasing Genius | National Geographic
I’ve been building stuff since I could walk. If I could get my hands on it, I’d take it apart, and if I had an idea, I’d try to build it. When someone says something’s impossible, I can figure out the way to make it possible. This all started with a visi…
Shark Tank Secrets, Smart Money Moves, and My Real Relationship with Mark Cuban l Full Send Podcast
[Music] All right, we got another great episode. We got, uh, Kevin Oer in the house. Shows up in style, what, an hour and a half early, and crushes three happy dads right upon entrance. Two watches. Two watches! You got to have two watches, otherwise you…
Scale factors and area
We’re told that polygon Q is a scaled copy of polygon P using a scale factor of one half. Polygon Q’s area is what fraction of polygon P’s area? Pause this video and see if you can figure that out. All right, my brain wants to make this a little bit tang…
A productive day in my life in med school 👩🏻‍⚕️
Foreign decided to move abroad. I was excited but also terrified. Living alone, away from family and friends, meant stepping out of my comfort zone and embracing a whole new world. And let me tell you, it’s been a roller coaster of emotions and experience…
Warren Buffett's 3 New Stocks for 2022!
Well, it’s that time again. 13F season is upon us, which means we get to glimpse inside the buys themselves of the world’s, uh, biggest and most successful investors. Today, we’re kicking things off with the granddaddy himself, Mr. Warren Buffett. So, th…