yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Diana Hu on Augmented Reality and Building a Startup in a New Market
All right, Diana! Whoo! Welcome to the podcast. Thank you for having me here. Correct, so maybe we should start from now and then go backward in time. So, you’re working on AR at Niantic after your company, Escher Reality, has been acquired. How did you s…
Easy Photography Life Hack!
Okay, I just learned the greatest life hack. If you see something that you want to take a picture of, but you left your phone at home, don’t worry. Just do this: blindfold yourself for like 30 minutes, and then stare at what you want to take a picture of …
Adding and subtracting fractions with negatives | 7th grade | Khan Academy
Let’s say we wanted to figure out what (3 \frac{7}{3}) minus (-\frac{7}{3}) minus (\frac{11}{3}) is. Pause this video and see if you can have a go at it before we do it together. All right, now let’s work on this together. You might be tempted to deal wi…
The Death Of Bees Explained – Parasites, Poison and Humans
Human society is extremely complex and fragile, built upon various pillars. One of them is the honey bee. One out of three meals eaten by humans is made possible by honey bees. They are so important that if all the honey bees were to die out, thousands of…
Rock Climbing: Taking the Fun Outdoors | Get Out: A Guide to Adventure
My name is Megan Martin. I am a professional rock climber, and today we’re going to talk about transitioning from the gym to the crack. One of the main reasons someone would want to transition from climbing in the gym all the time to climbing in a crack i…
Where Do GREAT Ideas Come From
Where do great ideas come from? And why do some people have bigger, better ideas than others? When we look at some of the most creative people who have ever lived, something jumps out at us. We can look at David Lynch, who wrote and directed Twin Peaks, M…