yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Markets and property rights | APⓇ Microeconomics | Khan Academy
In other videos, we have touched on the idea of property rights, but in this video, we’re going to go a little bit deeper and think about how property rights connect to the notion of a market. So first of all, think about what a market means to you. You …
Be Like Sal: 3 Ways a Tablet Can Energize Your Digital Teaching!
Thank you so much for joining today or this evening, depending on where you’re calling from. This is Jeremy Schieffen at Khan Academy, and I’m so excited they’re joining with us because if anything at Khan Academy, 2020 has been the year of the tablet. We…
Worked example: divergent geometric series | Series | AP Calculus BC | Khan Academy
So we’ve got this infinite series here, and let’s see. It looks like a geometric series. When you go from this first term to the second term, we are multiplying by -3, and then to go to the next term, we’re going to multiply by -3 again. So it looks like…
Introduction to experiment design | Study design | AP Statistics | Khan Academy
So let’s say that I am a drug company and I’ve come up with a medicine that I think will help folks with diabetes. In particular, I think it will help reduce their hemoglobin A1c levels. For those of you who aren’t familiar with what hemoglobin A1c is, I …
Why Are We Ticklish? Why do We Laugh?
Hey, Vsauce. Michael here. And today we’re going to talk about humor, comedy. What makes something funny, and when something’s funny, why do we laugh? What’s the purpose of laughing, and why do we laugh when we’re tickled? Well, people study this. They’…
Natascha McElhone: Playing Elizabeth Hopkins | Saints & Strangers
Elizabeth is a stranger. She’s not a program. She should even come for religious reasons, and this is indicative of the age and the era, 1620s. Uh, Elizabeth is introduced and is in the story largely because of her husband, Steven Hopkins. She comes with…