yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Interest groups and lobbying | Political participation | US government and civics | Khan Academy
Let’s discuss interest groups. As you can see here, it is one of the three parts of the iron triangle that we first studied when we looked at the bureaucracy in the executive branch. The whole point of the iron triangle is to show how these different part…
The Long Road Home | National Geographic
All committee, Reds, red one. Keep your eyes open, boys. Over, guys. See what I’m saying? Where the hell is everyone? Hold position. Culver, you—I know you’re upset, but we talked about this, right? Look, it’s a little like football. I’m the team captain…
Interpreting the meaning of the derivative in context | AP Calculus AB | Khan Academy
We’re told that Eddie drove from New York City to Philadelphia. The function ( d ) gives the total distance Eddie has driven in kilometers ( t ) hours after he left. What is the best interpretation for the following statement: ( d’ ) of 2 is equal to 100?…
Warren Buffett: How to Stop Losing Money When Investing
The first role in investment is don’t lose, and the second rule of investment is don’t forget the first rule. And that’s all the rules there are. I mean that if you buy things for far below what they’re worth, and you buy a group of them, you basically do…
Ask me anything with Sal Khan: March 30 | Homeroom with Sal
Welcome everyone to the daily homeroom! I hope you all had a good weekend. I know, or as good a weekend as you could have, given the circumstances. For those of you all who are new to our daily homeroom, this is really a way for us to stay connected as we…
A LACK OF FRIENDS INDICATES THAT A PERSON IS VERY.... | STOICISM
When asked about his lack of friends, a stoic man likened friendship to a diamond. Elusive and precious, he said, friendships are rare, valuable, and often surrounded by imitations. After a few errors in judgment, you begin to believe that all friendships…