yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Chain rule | Derivative rules | AP Calculus AB | Khan Academy
What we’re going to go over in this video is one of the core principles in calculus, and you’re going to use it any time you take the derivative of anything even reasonably complex. It’s called the chain rule. When you’re first exposed to it, it can seem …
Animals Cannot Be Blue | Explorer
[music playing] Sometimes nature plays tricks on us. What we think we know to be true may not be. Animals, for example, have lots of secrets, like their remarkable use of color to attract mates or disguise themselves from predators. Well, it turns out the…
The BEST Cryptocurrency To Buy In 2022 #shorts
So I’m sure you’re soon about to see a multitude of creators all share their thoughts on the top 10 cryptocurrencies to buy in 2022. So that got me thinking: there has to be data that exists to find out the best cryptocurrencies to invest in based on the…
Underwater Explosions (Science with Alan Sailer!) - Smarter Every Day 63
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So today, I’m in California, and I have the great privilege of introducing the man, Alan Sailer. Hello, Alan! Sailer is, if you don’t know, one of the best high-speed photographers that currently do…
Quantitative information in texts | Reading | Khan Academy
Hello readers! Today we’re going to talk about quantitative information in texts. But I want to start with a question: What’s the best way to describe the way a horse looks as it runs? What’s the most efficient way? I guess I could just use words, right?…
Evidence for evolution | Common ancestry and phylogeny | High school biology | Khan Academy
We’ve done many videos on Khan Academy on evolution and natural selection explaining them, but I thought I would do a video going a little bit more in-depth in evidence for evolution and natural selection. I starting with this quote: “Nothing in biology m…