yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Newton's first law | Physics | Khan Academy
You’re standing in a bus at rest, without any support. Suddenly, the bus starts moving, and you fall back, as if someone pushed you back. Why does this happen? You get back on your feet, and now suddenly the bus stops, and you fall forward, as if someone …
The Jacobian Determinant
In this video, I want to talk about something called the Jacobian determinant. It’s more or less just what it sounds like: it’s the determinant of the Jacobian matrix that I’ve been talking to you the last couple of videos about. Before we jump into it, …
3D Home Printing for the Developing World – Alexandria Lafci and Brett Hagler of New Story Charity
How about we start with you guys explaining what you do, and then we’ll go back in time and talk about how you ended up doing YC and all the rest of it. Also, sure! So, we’re a nonprofit, one of the first ones to go through Y Combinator, and we build hou…
The Mysteries of the Moai on Easter Island | National Geographic
[Music] Imposing stone sentinels stand guard on Rapanui, a volcanic island that anchors the western point of the Polynesian triangle in the South Pacific. You might know it as Easter Island. [Music] About 42% of the island is Rapa Nui National Park, a wo…
Endangered River Dolphin Species’ Numbers On the Rise | National Geographic
[Lindsay] Within the last couple of decades, this population has dramatically decreased in number. (camera clicks) There is one really close. (camera clicks) (gentle music) They are incredibly challenging to study because when they do surface, they don’t…
Greedflation: This Cost of Living Crisis Is Unlike Any Other.
Is the cost of living crisis we’re all going through right now just a result of price gouging? It very well could be, but also maybe there’s more to it. This is a really interesting topic that’s been running all over the Internet across the last year or t…