yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Natural selection and adaptation | Mechanisms of evolution | High school biology | Khan Academy
Hi everybody, Dr. Sammy here, your friendly neighborhood entomologist, and I was hoping that we could take a few minutes to talk about adaptation. What comes to mind when you think about adaptation? You might think of cryptic morphology that helps organi…
American attitudes about government and politics | US government and civics | Khan Academy
What we’re going to do in this video is think about how the core beliefs of U.S. citizens impact their views on the role of government. What I’m going to do is talk about a few core beliefs that are often associated with the United States. But take it wit…
Wildlife Disappearing at the Border | National Geographic
[Music] This wildlife refuge was established for the protection of native fishes. Eight species of native Rio Yaki fishes. [Music] The jaguar occurs in the Rio Yaki down all of these drainages. Now these drainages are completely dammed up. We’re going to …
College Board's Lorraine Hastings on preparing for the SAT during school closure | Homeroom with Sal
Hello! Welcome to our daily homeroom live stream. For those of y’all who are new to this, this is a live stream that we’re doing every day, as the name implies, to keep us connected and answer questions and figure out ways to support each other during the…
Choosing the right school | Careers and education | Financial Literacy | Khan Academy
So let’s think a little bit about how you might decide where you want to go to college. The first thing I’ll remind you, because this can oftentimes be a pretty stressful decision, is that there is no right decision. You just need to make the decision rig…
Alibaba Stock Keeps Dropping... Delisting Risk Intensifies?
Okay, there have been a lot of questions and comments about Alibaba lately. So, in this video, I want to talk about what’s going on and why this stock continues to slide further despite being quite undervalued already. I mean, the one-year chart shows now…