yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
How Much I Make With 3 Million Subscribers
What’s up you guys! It’s Graham here. So I’m sure at some point you’ve been scrolling YouTube. You come across your favorite creator, and then you start to think to yourself, “How much money are they making?” No? Just me? Alrighty then! I’ll end the vide…
Western Australia's Shark Attack Causes | SharkFest
[music playing] NARRATOR: And while sharks have always been present along this massive shoreline, starting in 2010, they become a problem. More than 60 attacks in just 10 years, triple the number of incidents from the preceding decade—it’s an unprecedent…
You Can't Win Until You Overcome These Obstacles
It’s just a matter of time until you have to overcome these, so you might as well get ready. Here are 15 obstacles you will be facing in life. Welcome to alux.com, the place where future billionaires come to get inspired. Number one: your parents’ limite…
YC SUS: Aaron Epstein and Eric Migicovsky give website feedback
Good morning! It’s Eric. I’m here with Aaron from YC. Aaron, do you mind giving us a little bit of an introduction? Jerusalem, sure! Hey, so I’m Aaron Epstein. I actually went through YC in winter 2010, so 10 years ago at this point. I was co-founder of …
Principles for Success: "Everything is a Machine" | Episode 5
Principles for success: an ultra mini-series adventure in 30 minutes and in eight episodes. Episode five: everything is a machine. Sometimes things happen that are hard to understand. Life often feels so difficult and complicated. It’s too much to take …
Michael Burry Backs out of Tesla Short
Was come out in the media over the past week that Michael Burry has ditched his short position against Tesla. So, another big name investor has tried to bet against Elon Musk and has run for the exit. However, unlike many others, there’s a good chance Mic…