yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
How to Poop on a Nuclear Submarine - Smarter Every Day 256
Hey, it’s me, Destin. Welcome back to Smarter Every Day. If you’re just joining this nuclear submarine deep dive series, boy have I got a treat for you. We have covered a ton of stuff that happens on board nuclear submarines. We looked at sonar, we looked…
The Man of a Trillion Worlds | Cosmos: Possible Worlds
NARRATOR: Harold Uris was a chemist. Like Gerard Kuiper, he also had to fight his way into science. Uris’ family was poor, like Kuiper’s, so he took a job teaching grammar school in a mining camp in Montana. The parents of one of his students urged him to…
Optimal decision-making and opportunity costs | AP(R) Microeconomics | Khan Academy
What we’re going to do in this video is think about optimal decision making by rational agents. It’s just thinking about how would a logical someone with a lot of reasoning ability make optimal decisions and make the best decisions for themselves. Well, t…
Society Needs THESE Two Things in Order to be Successful
History has shown that there are only two things a society needs in order to be successful. The first is the ability to provide a good education to most people that teaches them skills and civility so they can be productive. In other words, the developmen…
Example question calculating CPI and inflation | AP Macroeconomics | Khan Academy
The CPI, or Consumer Price Index, is used to measure the cost of a typical basket of goods the typical household in the nation of Jacksonia buys. Four loaves of bread, three pounds of cream cheese, and eight books are purchased each week. The prices of th…
Announcing ThinkerCon! - A Celebration of Online Educational Content
Announcing ThinkerCon! Remember several years ago, five of us educational content creators got together, and we did this live event. It was really fun, but people came from like 40 states and 12 different nations for it. So, clearly, there’s a lot of dema…