yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
Meaningfully composing functions | Composite and inverse functions | Precalculus | Khan Academy
We’re told that Jalen modeled the following relationships about their bus ride. So there’s three functions here; we have their inputs and we have their outputs. So, function P: the input is the time the bus arrives, given as lowercase b, and the output i…
HOW TO MAKE EASY MONEY IN THE STOCK MARKET
What’s up? Grandma’s guys here! So, after a year patiently waiting and getting hundreds of comments, DMs, emails, letters, and smoke signals asking me how my stock market investments are doing, the time has finally come to reveal exactly how much money I …
STRANGE but GENIUS Caterpillar Speed Trick - Smarter Every Day 93
[music] Hey, it’s me Destin. Welcome back to Smarter Every Day. I’m in Caleb’s room. Caleb is a science fair winner, so he is legit, and you dropped the cat in the cat drop video right? Yes. And we had a deal right? I paid you with something. What did …
How to learn Japanese in the easiest ways - Japanese learning tips from a native polyglot 🇯🇵
How can I learn Japanese? Where should I start? Should I learn Hiragana, Katakana, kanji first? How to pronounce Japanese words? Why is Japanese so complicated? I don’t know anything about kanji. Those are the most common things that I hear about learning…
Experiments in Art and Technology with Artforum Editor Michelle Kuo
So I’ll just start by saying experiments in art and technology was a group that was founded in 1966 by the artist Robert Rauschenberg by an engineer named Billy Kluever, who was a research scientist at Bell Labs at that time. Literally, the heyday, or bas…
High Speed Video of Pistols Underwater - Smarter Every Day 19
Hey, it’s me Destin. Welcome to this week in Smarter Every Day. Today, we’re gonna try to figure something out that I’ve always wondered. What happens when you shoot a pistol underwater? I think revolvers are gonna act a little different than semi-automat…