yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Visually determining vertical asymptotes | Limits | Differential Calculus | Khan Academy


2m read
·Nov 11, 2024

Given the graph of yal ( f(x) ) pictured below, determine the equations of all vertical asymptotes.

Let's see what's going on here. So it looks like interesting things are happening at ( x = -4 ) and ( x = 2 ). At ( x = -4 ), as we approach it from the left, the value of the function just becomes unbounded right over here. It looks like as we approach ( x = -4 ) from the left, the value of our function goes to infinity. Likewise, as we approach ( x = -4 ) from the right, it looks like our value of our function goes to infinity.

So I'd say that we definitely have a vertical asymptote at ( x = -4 ). Now let's look at ( x = 2 ). As we approach ( x = 2 ) from the left, the value of our function once again approaches infinity or it becomes unbounded.

Now, from the right, we have an interesting thing. If we look at the limit from the right right over here, it looks like we're approaching a finite value. As we approach ( x = 2 ) from the right, it looks like we’re approaching ( f(x) = -4 ). But just having a one-sided limit that is unbounded is enough to think about this as a vertical asymptote.

The function is not defined right over here, and as we approach it from just one side, we are becoming unbounded. It looks like we're approaching infinity or negative infinity. So that by itself, this unbounded left-hand limit or left side limit by itself is enough to consider ( x = 2 ) a vertical asymptote.

So we can say that there's a vertical asymptote at ( x = -4 ) and ( x = 2 ).

More Articles

View All
How Bill Ackman Lost $400 Million in 90 Days
Billionaire investor Bill Ackman recently lost 400 million dollars in less than 90 days, and in this video, we’re going to talk about what happened. Ackman is one of the most closely followed and highly respected investors on Wall Street, and rightfully s…
The Worst Place to Change a Tire | Continent 7: Antarctica
The Ross Ice Shelf team is at a dead stop in a growing storm, 100 miles from help. You out, you in the middle of nowhere; no one’s really been here before. Your life is in danger if you go outside and hang around in there too long. Rob has to change a fla…
Mark Wiens Goes Night Fishing and Jungle Foraging in Remote Thailand | Epic Food Journeys | Nat Geo
Nat Geo challenged me to fish and forage for a meal. So I’m in one of the most remote regions of Thailand with the Karen people, where I’ll be taking part in a special ceremony. My friend Mook will prepare a traditional Karen meal, and I can’t wait to t…
Polynomial identities introduction | Algebra 2 | Khan Academy
What we’re going to do in this video is talk a little bit about polynomial identities, and this is really just a fancy way of seeing whether an expression that involves a polynomial is equal to another expression. So, for example, you’re familiar with x …
Meet Six Rescued Rhinos That Survived Poaching | Short Film Showcase
Dingle, darlin’, lion’s den. They both lost their horns to poaching. They hit Worden family one day. Nice. How could the other panic? In his voice he said, “Are you, are you nuts? Press!” I said, “I said game drivers has come in, reported they were raided…
Introducing Constitution 101 from Khan Academy and the National Constitution Center
Introducing Constitution 101: The National Constitution Center and KH Academy are teaming up to offer students a free online course on the US Constitution. Led by conversations hosted by Jeffrey Rosen, President and CEO of the National Constitution Cente…