yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gravity vs. Pressure: The battle that formed the universe - Fabio Pacucci


3m read
·Nov 8, 2024

Welcome one and all! It’s time to grab your seat for the biggest battle in the soon-to-be-formed universe. That’s right—the Big Bang is about to go down! In one corner is the force that brings all matter together. It acts on any particle with mass, and its range is infinite—give it up for gravity!

In the other corner, our contender can push matter away with spectacular strength. When the going gets tough, this fighter just gets tougher. That’s right, it’s pressure! Over the next several hundred thousand years, these two contenders will be wrestling for the fate of the universe. That’s right folks, the ripple effects of this historic match will shape the structure of the universe as we know it today.

But what are these powers fighting over? We’ll find out when the Big Bang hits right... now! Let’s zoom in for the play-by-play. This epic event has brought three components into our infant universe: dark matter, which only interacts with gravity; baryonic matter, which makes up all matter you’ve ever seen, is affected by both gravity and pressure; and radiation composed of innumerable particles of light, also known as photons.

In the moments just after the Big Bang, all three components are in equilibrium, meaning no one location is denser than another. But as the universe starts expanding, differences in density start to emerge. Gravity immediately gets to work pulling matter together. Dark matter begins to collect at the center of these increasingly dense regions, forming the foundations of future galaxies.

Meanwhile, pressure begins gathering its strength. In this hot, high-energy environment, protons and electrons can’t come together to form atoms, so these loose particles zip around, freely interacting with ambient photons. The result is almost a fluid of baryonic matter and radiation. But the closer these baryonic particles get, the hotter the fluid becomes, pushing photons to ping around with incredible force.

This is the power of pressure, specifically radiation pressure, battling to push things apart. With each of gravity’s vicious tugs squeezing photons and matter together, pressure exerts a forceful shove back. And as the two giants struggle, they heave this fluid back and forth—creating massive waves called baryonic acoustic oscillations.

Moving at almost two thirds the speed of light, these BAOs ripple across space, impacting the universe on the biggest scale imaginable. These rolling waves determine the distribution of matter throughout space, meaning that today—almost 14 billion years after this fight began—we're more likely to find galaxies at their peaks and empty space in their troughs.

And that’s not all. We can still see these ripples in the background radiation of the universe, a permanent reminder of this epic brawl. But after being locked in a stalemate for roughly 370,000 years, the tide of our battle finally begins to turn. After all this time, the heat from the Big Bang has dissipated significantly, cooling the universe down to a temperature at which loose electrons start to pair up with protons.

Known as the “era of recombination,” this stops electrons from recklessly pinging around. This allows light to stream freely for the first time, illuminating the universe. These photons now only exert a tiny force on the neutral atoms they interact with, gradually reducing the power of pressure.

And with that, it’s time to crown our champion! The undefeated force, the most pervasive power in the universe: it’s gravity! And yet, this rivalry isn’t over. A similar battle continues between these two sworn enemies today, within every single star. As gravity pulls a star’s gas inward, pressure increases and pushes the matter back outward.

This push and pull keeps the Sun, and all other stars, stable for billions of years. In fact, this clash of the titans is the same reason Earth’s atmosphere doesn’t collapse to the ground. So while their greatest fight might have ended, these two warriors are still to be locked in combat—even as a new challenger approaches.

More Articles

View All
Warren Buffett: 90 Years of Investment Wisdom Summed Up in 15 Minutes (2021)
Whenever someone asks me how they can learn more about investing, the first thing I tell them is study Warren Buffett. He has an amazing ability to make complicated finance concepts seem so simple. Here are my five favorite clips of Warren Buffett explain…
Using Religion As A Tool | Bin Laden’s Hard Drive
MAN: It’s impossible to understand Bin Laden without reference to his religious beliefs. This was a guy who, when he was a teenager, was praying seven times a day, fasting twice a week. On the other hand, he was also a mass murderer. What was his relation…
The Challenges with Cancer Trials | Breakthrough
ANDRE CHOULIKA: We didn’t have any intention of injecting these type of vials to patient because we needed a lot of vials to be able to file our clinical trial application. And this was planned to be done with the University College London. NARRATOR: Bef…
What I wish I knew as a Teenager
What’s up you guys? It’s Graham here. So, all right, here we go. This topic has been requested a lot lately. So when you ask, you shall receive. Here’s exactly what I wish I knew as a teenager. From all my videos, I really feel like this one is especially…
How to Eliminate Single-Use Plastics on Vacation | National Geographic
[Music] Made it through the first leg of the trip. It is now 9:00 a.m. I have been up for quite a few hours, and there are no snacks that I could buy because everything is wrapped in plastic. Hi, I’m Marie McCrory with National Geographic Travel. Recentl…
Trick involving Maclaurin expansion of cosx
The first three nonzero terms of the McLaurin series for the function ( f(x) = x \cos(x) ). So one thing that you’re immediately going to find, let’s just remind ourselves what a McLaurin series looks like. Our ( f(x) ) can be approximated by the polynom…