yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gravity vs. Pressure: The battle that formed the universe - Fabio Pacucci


3m read
·Nov 8, 2024

Welcome one and all! It’s time to grab your seat for the biggest battle in the soon-to-be-formed universe. That’s right—the Big Bang is about to go down! In one corner is the force that brings all matter together. It acts on any particle with mass, and its range is infinite—give it up for gravity!

In the other corner, our contender can push matter away with spectacular strength. When the going gets tough, this fighter just gets tougher. That’s right, it’s pressure! Over the next several hundred thousand years, these two contenders will be wrestling for the fate of the universe. That’s right folks, the ripple effects of this historic match will shape the structure of the universe as we know it today.

But what are these powers fighting over? We’ll find out when the Big Bang hits right... now! Let’s zoom in for the play-by-play. This epic event has brought three components into our infant universe: dark matter, which only interacts with gravity; baryonic matter, which makes up all matter you’ve ever seen, is affected by both gravity and pressure; and radiation composed of innumerable particles of light, also known as photons.

In the moments just after the Big Bang, all three components are in equilibrium, meaning no one location is denser than another. But as the universe starts expanding, differences in density start to emerge. Gravity immediately gets to work pulling matter together. Dark matter begins to collect at the center of these increasingly dense regions, forming the foundations of future galaxies.

Meanwhile, pressure begins gathering its strength. In this hot, high-energy environment, protons and electrons can’t come together to form atoms, so these loose particles zip around, freely interacting with ambient photons. The result is almost a fluid of baryonic matter and radiation. But the closer these baryonic particles get, the hotter the fluid becomes, pushing photons to ping around with incredible force.

This is the power of pressure, specifically radiation pressure, battling to push things apart. With each of gravity’s vicious tugs squeezing photons and matter together, pressure exerts a forceful shove back. And as the two giants struggle, they heave this fluid back and forth—creating massive waves called baryonic acoustic oscillations.

Moving at almost two thirds the speed of light, these BAOs ripple across space, impacting the universe on the biggest scale imaginable. These rolling waves determine the distribution of matter throughout space, meaning that today—almost 14 billion years after this fight began—we're more likely to find galaxies at their peaks and empty space in their troughs.

And that’s not all. We can still see these ripples in the background radiation of the universe, a permanent reminder of this epic brawl. But after being locked in a stalemate for roughly 370,000 years, the tide of our battle finally begins to turn. After all this time, the heat from the Big Bang has dissipated significantly, cooling the universe down to a temperature at which loose electrons start to pair up with protons.

Known as the “era of recombination,” this stops electrons from recklessly pinging around. This allows light to stream freely for the first time, illuminating the universe. These photons now only exert a tiny force on the neutral atoms they interact with, gradually reducing the power of pressure.

And with that, it’s time to crown our champion! The undefeated force, the most pervasive power in the universe: it’s gravity! And yet, this rivalry isn’t over. A similar battle continues between these two sworn enemies today, within every single star. As gravity pulls a star’s gas inward, pressure increases and pushes the matter back outward.

This push and pull keeps the Sun, and all other stars, stable for billions of years. In fact, this clash of the titans is the same reason Earth’s atmosphere doesn’t collapse to the ground. So while their greatest fight might have ended, these two warriors are still to be locked in combat—even as a new challenger approaches.

More Articles

View All
Curvature formula, part 5
So let’s sum up where we are so far. We’re looking at this formula and trying to understand why it corresponds to curvature, why it tells you how much a curve actually curves. The first thing we did is we noticed that this numerator corresponds to a cert…
The 1619 Project | National Geographic
From the moment we were brought here in bondage in 1619, Black life in this country has been defined by hard work, and our labor has generated success stories that deserve to be celebrated. Commonly, people refer to “The 1619 Project” as a history, but it…
Why You Should Leave Your FAANG Job
We all know these people that want to just, like, tell you their darkest secret, which is they wake up every day and they, like, dream of quitting. Like, they have fantasies of quitting every day. Those are people that probably should quit. This is Micha…
How Eating Venomous Lionfish Helps the Environment | National Geographic
Fortunately, lion fish is an invasive species that actually tastes good. On a weekly basis, I’m getting calls from a number of places throughout the country, really asking when the next time is we’re going out to go hunt lion fish, cuz they need fish for …
Strong acid solutions | Acids and bases | AP Chemistry | Khan Academy
A strong acid is an acid that ionizes 100% in solution. For example, hydrochloric acid (HCl) as a strong acid donates a proton to water (H2O) to form the hydronium ion (H3O+) and the conjugate base to HCl, which is the chloride ion (Cl−). In reality, thi…
The Evergrande Crisis Continues...
Alright guys, welcome back! It’s time for an update video on Evergrande. I told you it would be a crazy week, and it certainly was. However, Evergrande is still standing, at least for now. So let’s get up to speed on exactly where Evergrande is at with th…