yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

End behavior of algebraic models | Mathematics III | High School Math | Khan Academy


2m read
·Nov 11, 2024

A barista poured a cup of coffee. The initial temperature of the coffee was 90 degrees Celsius. As time t increased, the temperature c of the coffee began to decrease exponentially and approach room temperature of 20 degrees Celsius.

Which of the following graphs could model this relationship?

So, we're starting at 90 degrees Celsius. It looks like all of the graphs start at 90 degrees Celsius at t equals zero, and we are going to get—we're going to approach the room temperature of 20 degrees Celsius.

So this first one does approach the room temperature of 20 degrees Celsius as t increases. Now this one, when t is 70—I'm assuming this is in minutes—when t is 70, it looks like it has the temperature going to zero degrees Celsius. So that cup of coffee is going to start freezing, so I think I could rule out B.

Also, this looks like a linear model, not an exponential one. C does get us to this end state that stays at 20 degrees, but it doesn't look like an exponential model. It looks like it's linearly decreasing, and then it stops linearly decreasing after 50 minutes, and then it just stays constant at that temperature of 20. So even though it gets us to the right place, it does not look like an exponential decay, so I would rule choice C out as well.

So A is looking good. D, we are starting at 90. It does look like an exponential function. We have exponential decay right over here, and we are approaching something, but it's not the room temperature of 20 degrees Celsius. We're approaching 30 degrees Celsius here, so I'd also rule out D.

So A is looking good. It's an exponential; it's decreasing exponentially, starting at 90 degrees Celsius, and it's approaching the room temperature of 20 degrees Celsius.

Let's do another one of these.

So it says—let me scroll up a little bit—so it says that after the closing of the mills, the population of the town starts decreasing exponentially. The graph below presents the population P, in thousands, of the town T years after the closing of the mill.

Alright, so it looks like the population starts at 40,000. It's decreasing exponentially. It looks like over time the population is approaching 20,000 people.

So what is the question here? Based on the graph with the mill closed, what does the population of the town approach as time increases?

Well, we just said it. As time increases, it looks like it's coming close to—it's approaching 20,000. It's approaching 20,000. It's already gotten below 22,000. As far as you know, it looks like by after twenty or twenty-two years, we've already gotten below 22,000.

So we're definitely below 30 or 40,000, but we haven't gotten below 20,000, but we are approaching it. And we can even check our answer if we like.

More Articles

View All
The End Of Retirement - Major Changes Explained
All right, so we have some pretty big changes for anyone who’s investing their money, building wealth, and working towards financial independence. And that would be the end of the four percent rule and why it no longer works, according to the person who i…
Amor Fati | Stoic Exercises For Inner Peace
In one of my earlier videos, I have talked about amor fati. Amor fati means ‘love of fate’, and is a concept in Stoic philosophy but also in the works of Nietzsche. The idea is to love and embrace whatever the outcome is, no matter how hard we work toward…
Confidence intervals for the difference between two proportions | AP Statistics | Khan Academy
Let’s review calculating confidence intervals for proportions. So, let’s say I have a population and I care about some proportion. Let’s say I care about the proportion of folks that are left-handed. I don’t know what that is, and so I take a sample of s…
Determining sample size based on confidence and margin of error | AP Statistics | Khan Academy
We’re told Della wants to make a one-sample z-interval to estimate what proportion of her community members favor a tax increase for more local school funding. She wants her margin of error to be no more than plus or minus two percent at the 95% confidenc…
Oceans 101 | National Geographic
Oceans cover over 70 percent of the Earth’s surface. They not only serve as the planet’s largest habitat, but also help to regulate the global climate. The ocean is a continuous body of salt water that surrounds the continents. It is divided into four ma…
Peter Lynch: How to Invest for Beginners (7 Investing Rules)
I’m amazed how many people own stocks; they would not be able to tell you why they own it. They couldn’t say in a minute or less why they don’t. Actually, if you really pressed them down, they’d say, “The reason I own this is the sucker’s going up,” and t…