yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How we see color - Colm Kelleher


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

You might have heard that light is a kind of wave and that the color of an object is related to the frequency of light waves it reflects. High-frequency light waves look violet, low-frequency light waves look red, and in-between frequencies look yellow, green, orange, and so on. You might call this idea physical color because it says that color is a physical property of light itself. It's not dependent on human perception.

And, while this isn't wrong, it isn't quite the whole story either. For instance, you might have seen this picture before. As you can see, the region where the red and green lights overlap is yellow. When you think about it, this is pretty weird. Because light is a wave, two different frequencies shouldn't interact with each other at all; they should just co-exist like singers singing in harmony.

So, in this yellow-looking region, two different kinds of light waves are present: one with a red frequency, and one with a green frequency. There is no yellow light present at all. So, how come this region, where the red and green lights mix, looks yellow to us?

To understand this, you have to understand a little bit about biology, in particular, about how humans see color. Light perception happens in a paper-thin layer of cells, called the retina, that covers the back of your eyeball. In the retina, there are two different types of light-detecting cells: rods and cones. The rods are used for seeing in low-light conditions, and there is only one kind of those. The cones, however, are a different story. There are three kinds of cone cells that roughly correspond to the colors red, green, and blue.

When you see a color, each cone sends its own distinct signal to your brain. For example, suppose that yellow light, that is real yellow light, with a yellow frequency, is shining on your eye. You don't have a cone specifically for detecting yellow, but yellow is kind of close to green and also kind of close to red, so both the red and green cones get activated, and each sends a signal to your brain saying so.

Of course, there is another way to activate the red cones and the green cones simultaneously: if both red light and green light are present at the same time. The point is, your brain receives the same signal, regardless of whether you see light that has the yellow frequency or light that is a mixture of the green and red frequencies. That's why, for light, red plus green equals yellow.

And, how come you can't detect colors when it's dark? Well, the rod cells in your retina take over in low-light conditions. You only have one kind of rod cell, and so there is one type of signal that can get sent to your brain: light or no light. Having only one kind of light detector doesn't leave any room for seeing color.

There are infinitely many different physical colors, but, because we only have three kinds of cones, the brain can be tricked into thinking it's seeing any color by carefully adding together the right combination of just three colors: red, green, and blue. This property of human vision is really useful in the real world. For example, TV manufacturing. Instead of having to put infinitely many colors in your TV set to simulate the real world, TV manufacturers only have to put three: red, green, and blue, which is lucky for them, really.

More Articles

View All
The "Sex Factor" for Women in Science | StarTalk
Welcome back to Star Talk! We are featuring my interview with actress Mayim Bialik. She is the neuroscientist on the hit TV series The Big Bang Theory, and I asked her about the portrayal of women scientists. Is it good? Is it bad? Is it working? Let’s ch…
Mistakes when finding inflection points: second derivative undefined | AP Calculus AB | Khan Academy
Robert was asked to find where ( g(x) ), which is equal to the cube root of ( x ), has inflection points. This is his solution, and then later we are asked if Robert’s work is correct. If not, what’s his mistake? So pause this video and try to figure it o…
Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy
Let’s say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which i…
Voter turnout | Political participation | US government and civics | Khan Academy
What we’re going to talk about in this video is voter turnout, which is a way of thinking about how many of the people who could vote actually do vote. It’s often expressed as a number, as a percentage, where you have the number who vote over the number o…
8 Hiking Essentials You Shouldn’t Leave Home Without | National Geographic
Action! Fellow adventurers, thrill seekers, and aficionados of the great outdoors, lend me your ears. I’m Starlight Williams, digital editor at National Geographic, amateur peak seeker along the northeast coast, and budding glamper. From trusty hiking pol…
Ratios with tape diagrams
We’re told Kenzie makes quilts with some blue squares and some green squares. The ratio of blue squares to green squares is shown in the diagram. The table shows the number of blue squares and the number of green squares that Kenzie will make on two of he…