yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How we see color - Colm Kelleher


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

You might have heard that light is a kind of wave and that the color of an object is related to the frequency of light waves it reflects. High-frequency light waves look violet, low-frequency light waves look red, and in-between frequencies look yellow, green, orange, and so on. You might call this idea physical color because it says that color is a physical property of light itself. It's not dependent on human perception.

And, while this isn't wrong, it isn't quite the whole story either. For instance, you might have seen this picture before. As you can see, the region where the red and green lights overlap is yellow. When you think about it, this is pretty weird. Because light is a wave, two different frequencies shouldn't interact with each other at all; they should just co-exist like singers singing in harmony.

So, in this yellow-looking region, two different kinds of light waves are present: one with a red frequency, and one with a green frequency. There is no yellow light present at all. So, how come this region, where the red and green lights mix, looks yellow to us?

To understand this, you have to understand a little bit about biology, in particular, about how humans see color. Light perception happens in a paper-thin layer of cells, called the retina, that covers the back of your eyeball. In the retina, there are two different types of light-detecting cells: rods and cones. The rods are used for seeing in low-light conditions, and there is only one kind of those. The cones, however, are a different story. There are three kinds of cone cells that roughly correspond to the colors red, green, and blue.

When you see a color, each cone sends its own distinct signal to your brain. For example, suppose that yellow light, that is real yellow light, with a yellow frequency, is shining on your eye. You don't have a cone specifically for detecting yellow, but yellow is kind of close to green and also kind of close to red, so both the red and green cones get activated, and each sends a signal to your brain saying so.

Of course, there is another way to activate the red cones and the green cones simultaneously: if both red light and green light are present at the same time. The point is, your brain receives the same signal, regardless of whether you see light that has the yellow frequency or light that is a mixture of the green and red frequencies. That's why, for light, red plus green equals yellow.

And, how come you can't detect colors when it's dark? Well, the rod cells in your retina take over in low-light conditions. You only have one kind of rod cell, and so there is one type of signal that can get sent to your brain: light or no light. Having only one kind of light detector doesn't leave any room for seeing color.

There are infinitely many different physical colors, but, because we only have three kinds of cones, the brain can be tricked into thinking it's seeing any color by carefully adding together the right combination of just three colors: red, green, and blue. This property of human vision is really useful in the real world. For example, TV manufacturing. Instead of having to put infinitely many colors in your TV set to simulate the real world, TV manufacturers only have to put three: red, green, and blue, which is lucky for them, really.

More Articles

View All
Periodicity of algebraic models | Mathematics III | High School Math | Khan Academy
We’re told Divya is seated on a Ferris wheel at time T equals zero. The graph below shows her height H in meters T seconds after the ride starts. So at time equals zero, she looks like about two. What is this? This would be one and a half, so it looks lik…
Successful Pitch
These are the three attributes you find in every successful pitch. These are the ones that get a check, that actually start their journey funded on Shark Tank, that go into the ecosphere of Shark Tank, that get followed every year by all the networks, tha…
Justification using first derivative | AP Calculus AB | Khan Academy
The differentiable function f and its derivative f prime are graphed. So let’s see. We see the graph of y is equal to f of x here in blue, and then f prime we see in this brownish orangish color right over here. What is an appropriate calculus based justi…
The Ponzi Factor: Proof by Definition
I talked with the author who has written a book so dangerous if this information becomes mainstream it alters the entire engine of our economy. Tong Lu has revealed just how our stock market is the dictionary definition of a Ponzi scheme. Here’s my conver…
Remy’s Paris | Epcot Becoming Episode 2 | National Geographic
The projects that we design, we build in steel and concrete. They’re going to be there a while. So, we do our homework. World Showcase has always been a reflection of the real countries around the world. A celebration of the architecture, of the music, of…
Mind-Blowing Magic Magnets - Smarter Every Day 153
Hey, it’s me Destin. Welcome back to SmarterEveryDay. You might not know this, but every single hydraulic pump in every car you’ve probably ever been in has a little bitty magnet in it to catch shavings so that the mechanism doesn’t foul up. Now, I know t…