yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How we see color - Colm Kelleher


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

You might have heard that light is a kind of wave and that the color of an object is related to the frequency of light waves it reflects. High-frequency light waves look violet, low-frequency light waves look red, and in-between frequencies look yellow, green, orange, and so on. You might call this idea physical color because it says that color is a physical property of light itself. It's not dependent on human perception.

And, while this isn't wrong, it isn't quite the whole story either. For instance, you might have seen this picture before. As you can see, the region where the red and green lights overlap is yellow. When you think about it, this is pretty weird. Because light is a wave, two different frequencies shouldn't interact with each other at all; they should just co-exist like singers singing in harmony.

So, in this yellow-looking region, two different kinds of light waves are present: one with a red frequency, and one with a green frequency. There is no yellow light present at all. So, how come this region, where the red and green lights mix, looks yellow to us?

To understand this, you have to understand a little bit about biology, in particular, about how humans see color. Light perception happens in a paper-thin layer of cells, called the retina, that covers the back of your eyeball. In the retina, there are two different types of light-detecting cells: rods and cones. The rods are used for seeing in low-light conditions, and there is only one kind of those. The cones, however, are a different story. There are three kinds of cone cells that roughly correspond to the colors red, green, and blue.

When you see a color, each cone sends its own distinct signal to your brain. For example, suppose that yellow light, that is real yellow light, with a yellow frequency, is shining on your eye. You don't have a cone specifically for detecting yellow, but yellow is kind of close to green and also kind of close to red, so both the red and green cones get activated, and each sends a signal to your brain saying so.

Of course, there is another way to activate the red cones and the green cones simultaneously: if both red light and green light are present at the same time. The point is, your brain receives the same signal, regardless of whether you see light that has the yellow frequency or light that is a mixture of the green and red frequencies. That's why, for light, red plus green equals yellow.

And, how come you can't detect colors when it's dark? Well, the rod cells in your retina take over in low-light conditions. You only have one kind of rod cell, and so there is one type of signal that can get sent to your brain: light or no light. Having only one kind of light detector doesn't leave any room for seeing color.

There are infinitely many different physical colors, but, because we only have three kinds of cones, the brain can be tricked into thinking it's seeing any color by carefully adding together the right combination of just three colors: red, green, and blue. This property of human vision is really useful in the real world. For example, TV manufacturing. Instead of having to put infinitely many colors in your TV set to simulate the real world, TV manufacturers only have to put three: red, green, and blue, which is lucky for them, really.

More Articles

View All
Introduction to agreement | The parts of speech | Grammar | Khan Academy
Hi Garans, today I want to talk about this idea in English that we call agreement. So, I’m going to teach you how to be agreeable and make it so that all of your sentences get along really well. Let me give you an example: the dog barks as opposed to the…
5 Books That Launched My Income To Over $20,000/month
Hey guys! Welcome back to the channel. In this video, I’m going to be running through five books that I think everyone should read if you want to get better with money, get better with personal finance, and specifically get better with investing. So obvi…
YC SUS: Aaron Epstein and Eric Migicovsky give website feedback
Good morning! It’s Eric. I’m here with Aaron from YC. Aaron, do you mind giving us a little bit of an introduction? Jerusalem, sure! Hey, so I’m Aaron Epstein. I actually went through YC in winter 2010, so 10 years ago at this point. I was co-founder of …
Synthetic Media: Virtual Influencers & Live Animation: Figments (S19) - YC Gaming Tech Talks 2020
My name is Jay Rosenkrantz. I’m the co-founder and CEO of Figments, with my brother Scott. As we’re building the next version of the WWE for esports, we went through YC Summer of 2019. I think one of the most fun and incredible things about this experienc…
Circadian Blues | National Geographic
A suburban home here looks like cunning predators who will not rest until they have driven sleep into extinction. They have evolved to emit a blue light that is remarkably similar to daylight. Humans, attracted by the light, soon find themselves mesmerize…
The Banach–Tarski Paradox
Hey, Vsauce. Michael here. There’s a famous way to seemingly create chocolate out of nothing. Maybe you’ve seen it before. This chocolate bar is 4 squares by 8 squares, but if you cut it like this and then like this and finally like this, you can rearrang…