yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How we see color - Colm Kelleher


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

You might have heard that light is a kind of wave and that the color of an object is related to the frequency of light waves it reflects. High-frequency light waves look violet, low-frequency light waves look red, and in-between frequencies look yellow, green, orange, and so on. You might call this idea physical color because it says that color is a physical property of light itself. It's not dependent on human perception.

And, while this isn't wrong, it isn't quite the whole story either. For instance, you might have seen this picture before. As you can see, the region where the red and green lights overlap is yellow. When you think about it, this is pretty weird. Because light is a wave, two different frequencies shouldn't interact with each other at all; they should just co-exist like singers singing in harmony.

So, in this yellow-looking region, two different kinds of light waves are present: one with a red frequency, and one with a green frequency. There is no yellow light present at all. So, how come this region, where the red and green lights mix, looks yellow to us?

To understand this, you have to understand a little bit about biology, in particular, about how humans see color. Light perception happens in a paper-thin layer of cells, called the retina, that covers the back of your eyeball. In the retina, there are two different types of light-detecting cells: rods and cones. The rods are used for seeing in low-light conditions, and there is only one kind of those. The cones, however, are a different story. There are three kinds of cone cells that roughly correspond to the colors red, green, and blue.

When you see a color, each cone sends its own distinct signal to your brain. For example, suppose that yellow light, that is real yellow light, with a yellow frequency, is shining on your eye. You don't have a cone specifically for detecting yellow, but yellow is kind of close to green and also kind of close to red, so both the red and green cones get activated, and each sends a signal to your brain saying so.

Of course, there is another way to activate the red cones and the green cones simultaneously: if both red light and green light are present at the same time. The point is, your brain receives the same signal, regardless of whether you see light that has the yellow frequency or light that is a mixture of the green and red frequencies. That's why, for light, red plus green equals yellow.

And, how come you can't detect colors when it's dark? Well, the rod cells in your retina take over in low-light conditions. You only have one kind of rod cell, and so there is one type of signal that can get sent to your brain: light or no light. Having only one kind of light detector doesn't leave any room for seeing color.

There are infinitely many different physical colors, but, because we only have three kinds of cones, the brain can be tricked into thinking it's seeing any color by carefully adding together the right combination of just three colors: red, green, and blue. This property of human vision is really useful in the real world. For example, TV manufacturing. Instead of having to put infinitely many colors in your TV set to simulate the real world, TV manufacturers only have to put three: red, green, and blue, which is lucky for them, really.

More Articles

View All
Why Are We Ticklish? Why do We Laugh?
Hey, Vsauce. Michael here. And today we’re going to talk about humor, comedy. What makes something funny, and when something’s funny, why do we laugh? What’s the purpose of laughing, and why do we laugh when we’re tickled? Well, people study this. They’…
Unchaining Captive Elephants in Nepal | National Geographic
I think the most memorable release that I was ever present at is when we put five elephants into a brand new 4-acre Corral. The elephants moved forward by a few feet, all tight together, with the babies underneath them. Then the babies started squealing, …
Dominica: The Nature Island (2023) | Pristine Seas | National Geographic Society
[Music] [Music] [Music] [Music] [Music] Oh, the first people who inhabited this island, the Can people, clearly lived in tandem with [Music] nature. I grew up in my entire life in the Carago space. I was part of a unique family; my dad, my uncle, two cous…
Khan for Educators: Course Mastery
Hi, I’m Megan from Khan Academy, and in this video, we’re going to explore Khan Academy’s course mastery system. At Khan Academy, we’re devoted to mastery learning and build our content around our course mastery system. However, a question we hear freque…
What Now For The Higgs Boson?
We are on our way to CERN in Geneva, and this is John Mark, the cameraman. Hi! And, uh, we should be coming up on it. That’s the Dome; that’s the famous CERN Dome up ahead. This is pretty exciting! On July 4th here at CERN, a historic announcement was mad…
Meet Warriors on a Mission to Help Lions and Humans Coexist | Expedition Raw
We have never seen the river dry at this time of the year. There’s not much grass and is no enough. What a state! A foreign world. The water is underground, and this is how we get water for both whirling, powerless stuff and also for people. This is how w…