yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties (advanced) | High School Math | Khan Academy


4m read
·Nov 11, 2024

So let's get even more practice solving some exponential equations. I have two different exponential equations here, and like always, pause the video and see if you can solve for x in both of them.

All right, let's tackle this one in purple first. You might first notice that on both sides of the equation, I have different bases. So it would be nice to have a common base. When you look at it, you're like, well, 32 is not a power of 8—or at least it's not an integer power of 8—but they are both powers of 2.

32 is the same thing as 2 to the fifth power, and 8 is the same thing as 2 to the third power. So I can rewrite our original equation as, instead of writing 32, I could write it as 2 to the 5th, and then that's going to be raised to the x over 3 power. That is equal to, instead of writing 8, I could write 2 to the third power, and I'm raising that to the x minus 12.

Now, if I raise something to a power, then raise that to a power, I could just multiply these exponents. So I could rewrite the left-hand side as 2 to the 5x over 3. I just multiply these exponents, and that's going to be equal to 2 to the (3x minus 36).

Now things have simplified nicely. I have 2 to this power is equal to 2 to that power, so these two exponents must be equal to each other. 5x over 3 must be equal to 3x minus 36. So let's set them equal to each other and solve for x.

So, 5x over 3 is equal to 3x minus 36. Let's see, we could multiply everything by three. Let's do that. If we multiply everything times three here, we're going to get 5x is equal to 9x minus 108. Now, we can subtract 9x from both sides, and so we will get 5x minus 9x, which is going to be negative 4x, is equal to negative 108. We're in the home stretch here!

Divide—whoops, sorry about that! We could divide both sides by negative 4. We are left with x is equal to—what is this going to be? 27. x is equal to 27, and we are all done! We're all done, and if you substituted x back in there, you would get 32 to the (27 divided by 3). So, 32 to the ninth power is the same thing as 8 to the (27 minus 12) power, which is 8 to the 15th.

27 minus 12 is 15. So anyway, that was fun. Let's do the next one now. This one looks interesting in other ways. We have rational expressions. We expect we have an exponential up here and an exponential down here.

The key realization here is—well, the first thing I'd like to do—let me put this 25 in terms of 5. We know that 25 is the same thing as 5 squared. So we can rewrite this as 5 to the (4x + 3) over—instead of 25, I could rewrite that as 5 squared, and then I'm going to raise that to the (9 minus x). That, of course, is going to be equal to 5 to the (2x + 5).

Now, 5 to the second and then that to the (9 minus x), I can just multiply these exponents. So this is going to be 5 to the (4x + 3) over 5 to the (18 minus 2x), and that is going to be equal to 5 to the (2x + 5).

Now, let's see, there's multiple ways that we could tackle it. We could multiply both sides of this equation by 5 to the (18 minus 2x)—that's one way to do it—or we could say, "Hey, look! I have 5 to some exponent divided by 5 to some other exponent." So I could just subtract this blue exponent from this yellow one.

The left-hand side will simplify to 5 to the (4x + 3 minus 18 + 2x), and that, of course, is going to be equal to what we've had on the right-hand side: 5 to the (2x + 5).

Now we just have to simplify a little bit. Let's see, this is going to be—in fact, we could just say—look, I'm having trouble with my little pen tool. Whoops! All right, so now we can say this exponent needs to be equal to that exponent because we have the same base.

So what we have here on the left-hand side that I can rewrite as (4x + 3 minus 18 plus 2x)—I'm just multiplying the negative times both of these terms—so plus 2x is going to be equal to (2x + 5).

So there's a bunch of different things we could do here. One, we could subtract 2x from both sides. That'll clean it up a little bit. We could also subtract 5 from both sides, so let's just do that. Let me just subtract 5 from both sides.

I'm skipping some steps here, but I figure you're at this point reasonably comfortable with linear equations. So then, on the left-hand side, we are going to have 4x, and then you have (3 minus 18 minus 5).

3 minus 18 is negative 15, and negative 15 minus 5 is negative 20, which is going to be equal to zero. Because those cancel out, you can add 20 to both sides and get 4x is equal to 20. Divide both sides by 4, and we get x is equal to 5, and we are all done!

More Articles

View All
The Untold Truth About Money: How to Build Wealth From Nothing.
Narrator: Let this circle represent $1,000,000. This is what ten million dollars would look like. This is what one hundred million dollars would look like, and this is what 1 billion dollars would look like. Jeff Bezos, the founder of Amazon, has a net w…
Hess's law | Thermodynamics | AP Chemistry | Khan Academy
Hess’s law states that the overall change in enthalpy for a chemical reaction is equal to the sum of the enthalpy changes for each step, and this is independent of the path taken. So it doesn’t matter what set of reactions you use; if you add up those rea…
How to start learning a language-Language tips from a Polyglot
Hi guys, it’s me, Judy. I’m a first-year medical student in Turkey, and today we’re gonna be talking about how to start learning a new language. A lot of people want to learn a new language, but most of us don’t know where to start or what to do. So, I ho…
HOW ROCKETS ARE MADE (Rocket Factory Tour - United Launch Alliance) - Smarter Every Day 231
Five… Four…. Three… Two… One… Hey, it’s me Destin, welcome back to Smarter Every Day! I love rockets. If you’ve been around this channel, you know that about me, and today is like the best day ever because we’re going to learn how to build rockets. Just d…
He Tastes Water Like Some Taste Wine. Meet a Water Sommelier | Short Film Showcase
People always think there is no value to water, and what motivates me is that I want to give whatever value as a water. So, McGee, I’m an advocate for water, our most important beverage on this planet. What a lot of people always say, “What? Are so many i…
Battling the Current | Primal Survivor
Finally, I know I’m approaching the waterfalls because the rush of water is becoming deafening. Here they are, amazing! Standing this close to such thundering power is breathtaking. When the fish migrate up the river to spawn, many gather near the base of…