yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties (advanced) | High School Math | Khan Academy


4m read
·Nov 11, 2024

So let's get even more practice solving some exponential equations. I have two different exponential equations here, and like always, pause the video and see if you can solve for x in both of them.

All right, let's tackle this one in purple first. You might first notice that on both sides of the equation, I have different bases. So it would be nice to have a common base. When you look at it, you're like, well, 32 is not a power of 8—or at least it's not an integer power of 8—but they are both powers of 2.

32 is the same thing as 2 to the fifth power, and 8 is the same thing as 2 to the third power. So I can rewrite our original equation as, instead of writing 32, I could write it as 2 to the 5th, and then that's going to be raised to the x over 3 power. That is equal to, instead of writing 8, I could write 2 to the third power, and I'm raising that to the x minus 12.

Now, if I raise something to a power, then raise that to a power, I could just multiply these exponents. So I could rewrite the left-hand side as 2 to the 5x over 3. I just multiply these exponents, and that's going to be equal to 2 to the (3x minus 36).

Now things have simplified nicely. I have 2 to this power is equal to 2 to that power, so these two exponents must be equal to each other. 5x over 3 must be equal to 3x minus 36. So let's set them equal to each other and solve for x.

So, 5x over 3 is equal to 3x minus 36. Let's see, we could multiply everything by three. Let's do that. If we multiply everything times three here, we're going to get 5x is equal to 9x minus 108. Now, we can subtract 9x from both sides, and so we will get 5x minus 9x, which is going to be negative 4x, is equal to negative 108. We're in the home stretch here!

Divide—whoops, sorry about that! We could divide both sides by negative 4. We are left with x is equal to—what is this going to be? 27. x is equal to 27, and we are all done! We're all done, and if you substituted x back in there, you would get 32 to the (27 divided by 3). So, 32 to the ninth power is the same thing as 8 to the (27 minus 12) power, which is 8 to the 15th.

27 minus 12 is 15. So anyway, that was fun. Let's do the next one now. This one looks interesting in other ways. We have rational expressions. We expect we have an exponential up here and an exponential down here.

The key realization here is—well, the first thing I'd like to do—let me put this 25 in terms of 5. We know that 25 is the same thing as 5 squared. So we can rewrite this as 5 to the (4x + 3) over—instead of 25, I could rewrite that as 5 squared, and then I'm going to raise that to the (9 minus x). That, of course, is going to be equal to 5 to the (2x + 5).

Now, 5 to the second and then that to the (9 minus x), I can just multiply these exponents. So this is going to be 5 to the (4x + 3) over 5 to the (18 minus 2x), and that is going to be equal to 5 to the (2x + 5).

Now, let's see, there's multiple ways that we could tackle it. We could multiply both sides of this equation by 5 to the (18 minus 2x)—that's one way to do it—or we could say, "Hey, look! I have 5 to some exponent divided by 5 to some other exponent." So I could just subtract this blue exponent from this yellow one.

The left-hand side will simplify to 5 to the (4x + 3 minus 18 + 2x), and that, of course, is going to be equal to what we've had on the right-hand side: 5 to the (2x + 5).

Now we just have to simplify a little bit. Let's see, this is going to be—in fact, we could just say—look, I'm having trouble with my little pen tool. Whoops! All right, so now we can say this exponent needs to be equal to that exponent because we have the same base.

So what we have here on the left-hand side that I can rewrite as (4x + 3 minus 18 plus 2x)—I'm just multiplying the negative times both of these terms—so plus 2x is going to be equal to (2x + 5).

So there's a bunch of different things we could do here. One, we could subtract 2x from both sides. That'll clean it up a little bit. We could also subtract 5 from both sides, so let's just do that. Let me just subtract 5 from both sides.

I'm skipping some steps here, but I figure you're at this point reasonably comfortable with linear equations. So then, on the left-hand side, we are going to have 4x, and then you have (3 minus 18 minus 5).

3 minus 18 is negative 15, and negative 15 minus 5 is negative 20, which is going to be equal to zero. Because those cancel out, you can add 20 to both sides and get 4x is equal to 20. Divide both sides by 4, and we get x is equal to 5, and we are all done!

More Articles

View All
The Element That Could Kill Billions but Save Millions
Many warnings have been uttered by eminent men of science and by authorities in military strategy. None of them will say that the worst results are certain. What they do say is that these results are possible, and no one can be sure that they won’t be rea…
4 Revolutionary Riddles Resolved!
This video contains the answers to my four revolutionary riddles, so if you haven’t seen the riddles yet, you should probably watch them before you watch the answers. It’s OK; I’ll wait. Just click this card up here. [Ticking clock sound] Now, when I fil…
Enumerated and implied powers of the US federal government | Khan Academy
In this video, we’re going to focus on enumerated powers versus implied powers for the federal government. Enumerated just means powers that have been made explicit, that are clear, that have been enumerated, that have been listed someplace. While implied…
What Is ZIRP And How Did It Poison Startups?
Uhoh, one of the sinkholes, so to speak, that the money could go into is the asset class known as venture capital. And sinkhole it is. [Music] All right. This is Dalton plus Michael, and today we’re going to talk about what is ZERP and why did it mess w…
Nancy Pelosi | The Absolute Chaos Of Insider Trading
What’s up guys, it’s Graham here. So, I have to say, I was not planning to make this video, but when I see hundreds of people quietly talking about the latest way to make a lot of money in the stock markets, I’m gonna listen. And believe it or not, the se…
Charlie Munger: How to Get Rich Starting at $0
Sew a lot of videos out there claim they will help make you rich, but these five wealth building principles from Charlie Munger actually will. When you type in the words “how to get rich” in YouTube or in the Google search bar, you get flooded with all so…