yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral properties (no graph): breaking interval | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're given that the definite integral from one to four of f of x dx is equal to six, and the definite integral from one to seven of f of x dx is equal to eleven. We want to figure out the definite integral from four to seven of f of x dx.

So, at least in my brain, I'm visualizing these as areas between the curve y equals f of x and the x-axis. Let's just draw that. We don't know exactly what f of x is, but we can draw an arbitrary f of x just to help us visualize things.

Let me draw. So, if that is, draw that in a bolder color. That's our y-axis, and this is our x-axis. Let's see, all the action is happening between x from 1 to 7.

We could go one, let me we can go one, two, three, four, five, six, seven, and we can even go to 8 if we like. But the important numbers, let's see, we're dealing with 1, 2, 3, 4, 5, 6, 7, and then we go to 8.

Let me just draw the graph y equals f of x, and I'm just going to draw something arbitrary here. So, let's say the graph of y equals f of x looks like that. y is equal to f of x, of course.

Let me label my axes. That's the x-axis; that is the y-axis. Now let's think about what each of these integrals represent. The integral, the definite integral from 1 to 4, well, that's going to be—we're going to be going from 1 to 4 right over here.

So, this is the definite integral from 1 to 4, this area under the curve between the curve and the x-axis dx, which is equal to 6. Now let's see, we also have the region that goes from four to seven. We have this region right over here, and that area is represented by this definite integral—the one that we need to figure out, the definite integral from four to 7 of f of x dx.

We need to figure that out. And they also—what else do we have? So let me underline this. So, that's the area of the region between x equals 4 and x equals 7, under y equals f of x, above the x-axis.

Then they also gave us this last piece of information, which is—let me do this in another color—the definite integral from 1 to 7. Well, that's going from 1 all the way to 7.

So, that's the sum of these two regions right over here. We could rewrite this as the definite integral from 1 to 4 of f of x dx plus the definite integral from 4 to 7 of f of x dx is equal to the definite integral from 1 to 7 of f of x dx.

Notice what's going on here: this first one just goes the area from one to four. Then we go from four to seven. So if you add those together, that's going to be the area from 1 to 7.

They give us a lot of this information. They tell us that this right over here is 6. Let me do that same color. They tell us that this is 6; they tell us that this is 11. So we have 6 plus this is equal to 11.

Well, 6 plus what is equal to 11? Well, this thing right over here must be equal to this thing, right? The definite integral from four to seven must be equal to 5. This must be equal to 5.

Another way to think about it, if this region right over—if I'm having trouble switching colors—if this region right over here is 6, so that has an area of 6, and the whole region, if everything, has an area of 11.

So if that plus that has an area of 11, then the stuff that we don't know, this orange region, this orange region is going to be 11 minus 6. So, this region right over here is going to have an area of 5.

More Articles

View All
Kevin O'Leary V2
Actually, I was born Terrence Thomas Kevin O’Leary. My dad was Irish and he loved long names, but when they got me home, everybody realized it was going to be total confusion because dad was named Terry too. So the next thing I knew, I was Kevin. Two year…
Analyzing relationships between variables using tables and equations | 6th grade | Khan Academy
We’re told Rava is researching an electric car. She finds this graph which shows how much range, measured in kilometers, the car gains based on charging time. All right, and they say first fill in the missing values in the table below. If you are so inspi…
Multiplicity of zeros of polynomials | Polynomial graphs | Algebra 2 | Khan Academy
So what we have here are two different polynomials, p1 and p2, and they have been expressed in factored form. You can also see their graphs. This is the graph of y is equal to p1 of x in blue, and the graph of y is equal to p2 of x in white. What we’re g…
Sue's New System (Deleted Scene) | Life Below Zero
[Music] So you, I mean, this has been quite the process. The tanks were delivered overland this winter, and now they’re in place, painted, hoses in the right area. Just did the electric pumps, put everything in. The whole thing is new, and it envelopes a …
Methods for subracting 3 digit numbers
Hello! In this video, we’re going to think about techniques for subtracting three-digit numbers. So, let’s say we wanted to figure out what 357 minus 156 is. Pause this video and see if you can somehow figure this out. You don’t have to be able to, becaus…
15 Valuable Lessons You Learn After Your First Big Win
You know, everyone always talks about lessons you learn from failures and how important they are. But if all you have are failures, then maybe those lessons are incomplete. Today we’re going over 15 valuable lessons you only learned after your first win. …