yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral properties (no graph): breaking interval | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're given that the definite integral from one to four of f of x dx is equal to six, and the definite integral from one to seven of f of x dx is equal to eleven. We want to figure out the definite integral from four to seven of f of x dx.

So, at least in my brain, I'm visualizing these as areas between the curve y equals f of x and the x-axis. Let's just draw that. We don't know exactly what f of x is, but we can draw an arbitrary f of x just to help us visualize things.

Let me draw. So, if that is, draw that in a bolder color. That's our y-axis, and this is our x-axis. Let's see, all the action is happening between x from 1 to 7.

We could go one, let me we can go one, two, three, four, five, six, seven, and we can even go to 8 if we like. But the important numbers, let's see, we're dealing with 1, 2, 3, 4, 5, 6, 7, and then we go to 8.

Let me just draw the graph y equals f of x, and I'm just going to draw something arbitrary here. So, let's say the graph of y equals f of x looks like that. y is equal to f of x, of course.

Let me label my axes. That's the x-axis; that is the y-axis. Now let's think about what each of these integrals represent. The integral, the definite integral from 1 to 4, well, that's going to be—we're going to be going from 1 to 4 right over here.

So, this is the definite integral from 1 to 4, this area under the curve between the curve and the x-axis dx, which is equal to 6. Now let's see, we also have the region that goes from four to seven. We have this region right over here, and that area is represented by this definite integral—the one that we need to figure out, the definite integral from four to 7 of f of x dx.

We need to figure that out. And they also—what else do we have? So let me underline this. So, that's the area of the region between x equals 4 and x equals 7, under y equals f of x, above the x-axis.

Then they also gave us this last piece of information, which is—let me do this in another color—the definite integral from 1 to 7. Well, that's going from 1 all the way to 7.

So, that's the sum of these two regions right over here. We could rewrite this as the definite integral from 1 to 4 of f of x dx plus the definite integral from 4 to 7 of f of x dx is equal to the definite integral from 1 to 7 of f of x dx.

Notice what's going on here: this first one just goes the area from one to four. Then we go from four to seven. So if you add those together, that's going to be the area from 1 to 7.

They give us a lot of this information. They tell us that this right over here is 6. Let me do that same color. They tell us that this is 6; they tell us that this is 11. So we have 6 plus this is equal to 11.

Well, 6 plus what is equal to 11? Well, this thing right over here must be equal to this thing, right? The definite integral from four to seven must be equal to 5. This must be equal to 5.

Another way to think about it, if this region right over—if I'm having trouble switching colors—if this region right over here is 6, so that has an area of 6, and the whole region, if everything, has an area of 11.

So if that plus that has an area of 11, then the stuff that we don't know, this orange region, this orange region is going to be 11 minus 6. So, this region right over here is going to have an area of 5.

More Articles

View All
Exploring the Ocean for Sixty Years | Best Job Ever
Even if you’ve never seen the ocean or touch the ocean, the ocean touches you with every breath you take, every trough of water you drink. It’s the ocean. It’s the ocean for me. Being a biologist, just following my heart has led me to some fascinating pl…
3 Sources of Water on the Moon
Is there water on the Moon? The obvious answer seems to be no. Because during a day on the Moon, which lasts 2 Earth weeks, the temperature on the lunar surface gets up to 123 degrees Celsius, which would be enough to boil away any water if the Moon had a…
The Crazy Engineering of Venice
The year is 452. The Roman Empire is on the brink of collapse, and the Huns have just launched their attack on Northern Italy. Several cities are completely destroyed, forcing the locals to go on the run. They head for a lagoon just off the coast and take…
A story's point of view | Reading | Khan Academy
Hello readers. Today I want to talk all about me. Well, I want to talk about three things. First, I want to talk all about me; then I’m going to talk about you, and then we’re going to talk about them. David, what are you talking about? You’re probably a…
Homeroom with Sal & Lindsay Spears - Monday, June 22
Hi everyone! Welcome to the daily homeroom. It’s been a little bit of a while. We took a week-long break last week, so hopefully, everyone is doing well. For those of you who are new to this, this is something we started doing when we started seeing the …
Life in Alaska: Keeping an eye out for salmon and bears | Alaska: The Next Generation
It is something that’s kinda been lost. And it does make the elders happy and excited that you’re getting out there and doing what they used to do. Yeah, this is the end. End of the line right here. The fish are all spawned up now. These are uh, sockeye s…