yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Cumulative geometric probability (less than a value) | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Lilliana runs a cake decorating business for which 10% of her orders come over the telephone. Let's see ( C ), the number of cake orders Lilliana receives in a month until she first gets an order over the telephone.

Assumed a method of placing each cake order is independent, so if we assume a few things as a classic geometric random variable, what tells us that? Well, a giveaway is that we're gonna keep doing these independent trials where the probability of success is constant. There's a clear success—a telephone order in this case is a success. The probability is 10% of it happening, and we're gonna keep doing it until we get a success. So, classic geometric random variable.

Now they asked us to find the probability—the probability that it takes fewer than five orders for Lilliana to get her first telephone order of the month. So, it's really the probability that ( C < 5 ).

So, like always, pause this video and have a go at it. Even if you struggle with it, that's even better. Your brain will be more primed for the actual solution that we can go through together.

All right, so I'm assuming you've had a go at it. There's a couple of ways to approach it. You could say, well, look, this is just going to be the probability that ( C = 1 ) plus the probability that ( C = 2 ) plus the probability that ( C = 3 ) plus the probability that ( C = 4 ), and we can calculate it this way.

What is the probability that ( C = 1 )? Well, the probability that her very first order is a telephone order is ( 0.1 ).

What's the probability that ( C = 2 )? Well, the probability that her first order is not a telephone order is ( 1 - 0.1 ), so there's a 90% chance it's not a telephone order, and that her second order is a telephone order.

What about the probability ( C = 3 )? Well, her first two orders would not be telephone orders and her third order would be.

Then ( C = 4 ): well, her first three orders would not be telephone orders, and her fourth one would.

We could get a calculator maybe and add all of these things up, and we would actually get the answer, but you probably wonder, well, this is kind of hairy to type into a calculator; maybe there is an easier way to tackle this, and indeed there is.

So think about it: the probability that ( C < 5 ) is the same thing as ( 1 - ) the probability that we don't have a telephone order in the first four. So ( 1 - ) the probability that no telephone order in first four orders.

So what's this? Well, because this is just saying we, you know, what's the problem we do have an order in the first four? So it's the same thing as ( 1 - ) the probability that we don't have an order in the first four.

This is pretty straightforward to calculate. So this is going to be equal to ( 1 - ) and let me do this in another color so we know what I'm referring to.

So what's the probability that we have no telephone orders in the first four orders? Well, the probability on a given order that you don't have a telephone order is ( 0.9 ), and then if that has to be true for the first four, well, it's going to be ( 0.9 \times 0.9 \times 0.9 \times 0.9 ) or ( 0.9^4 ).

So this is a lot easier to calculate. So let's do that. Let's get a calculator out.

All right, so let me just take ( 0.9^4 ) which is equal to—and then let me subtract that from one, so let me make that negative and then let me add one to it—and we get, there you go, ( 0.3439 ).

So this is equal to ( 0.3439 ), and we're done. That's the probability that it takes fewer than five orders for her to get her first telephone order of the month.

More Articles

View All
The Taoist Way of Letting Go
This video is not intended to invalidate the importance of control. In some cases, control - especially self-control - is necessary. We need it to plan, to work, and to engage in relationships. But too much of it is counterproductive and a waste of energy…
How These Women Are Saving Black Mothers' Lives | National Geographic
My name is Brianna Green. I’m a perinatal community health worker. Every day is heavy, and it is life and death. The issue at hand with maternal mortality is primarily the disparity that exists between Black women and White women in this country, and part…
The Technical Challenges of Measuring Gravitational Waves - Rana Adhikari of LIGO
So maybe, yeah, maybe we should just start out explaining like what is LIGO. LIGO is a huge project aimed at being able to take the bending of space that we think is happening all the time and turn it into some kind of signal that we can use and measure. …
David Friedman. What About The Poor?
Some people have no money, no friends, and no assets. Would these people also have no rights in an anarcho-capitalist society? Now, if you have somebody with no money at all, and nobody who likes them is willing to help him out, he may not be able to affo…
How I bought a Tesla for $78 Per Month
I just bought the $35,000 Tesla Model 3, and just like any 28-year-old millennial adieu, I ordered it online without ever having seen it and without ever having driven one before. Here’s what happened: I was browsing YouTube and happened to come across a…
How Warren Buffett Made His First $1 Million
So, in this video, we’re going to talk about how Warren Buffett made his first million dollars and what you can learn from it to make yours. Warren Buffett is currently worth $100 billion and built a company that is worth $650 billion. If you’re watching …