yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Cumulative geometric probability (less than a value) | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Lilliana runs a cake decorating business for which 10% of her orders come over the telephone. Let's see ( C ), the number of cake orders Lilliana receives in a month until she first gets an order over the telephone.

Assumed a method of placing each cake order is independent, so if we assume a few things as a classic geometric random variable, what tells us that? Well, a giveaway is that we're gonna keep doing these independent trials where the probability of success is constant. There's a clear success—a telephone order in this case is a success. The probability is 10% of it happening, and we're gonna keep doing it until we get a success. So, classic geometric random variable.

Now they asked us to find the probability—the probability that it takes fewer than five orders for Lilliana to get her first telephone order of the month. So, it's really the probability that ( C < 5 ).

So, like always, pause this video and have a go at it. Even if you struggle with it, that's even better. Your brain will be more primed for the actual solution that we can go through together.

All right, so I'm assuming you've had a go at it. There's a couple of ways to approach it. You could say, well, look, this is just going to be the probability that ( C = 1 ) plus the probability that ( C = 2 ) plus the probability that ( C = 3 ) plus the probability that ( C = 4 ), and we can calculate it this way.

What is the probability that ( C = 1 )? Well, the probability that her very first order is a telephone order is ( 0.1 ).

What's the probability that ( C = 2 )? Well, the probability that her first order is not a telephone order is ( 1 - 0.1 ), so there's a 90% chance it's not a telephone order, and that her second order is a telephone order.

What about the probability ( C = 3 )? Well, her first two orders would not be telephone orders and her third order would be.

Then ( C = 4 ): well, her first three orders would not be telephone orders, and her fourth one would.

We could get a calculator maybe and add all of these things up, and we would actually get the answer, but you probably wonder, well, this is kind of hairy to type into a calculator; maybe there is an easier way to tackle this, and indeed there is.

So think about it: the probability that ( C < 5 ) is the same thing as ( 1 - ) the probability that we don't have a telephone order in the first four. So ( 1 - ) the probability that no telephone order in first four orders.

So what's this? Well, because this is just saying we, you know, what's the problem we do have an order in the first four? So it's the same thing as ( 1 - ) the probability that we don't have an order in the first four.

This is pretty straightforward to calculate. So this is going to be equal to ( 1 - ) and let me do this in another color so we know what I'm referring to.

So what's the probability that we have no telephone orders in the first four orders? Well, the probability on a given order that you don't have a telephone order is ( 0.9 ), and then if that has to be true for the first four, well, it's going to be ( 0.9 \times 0.9 \times 0.9 \times 0.9 ) or ( 0.9^4 ).

So this is a lot easier to calculate. So let's do that. Let's get a calculator out.

All right, so let me just take ( 0.9^4 ) which is equal to—and then let me subtract that from one, so let me make that negative and then let me add one to it—and we get, there you go, ( 0.3439 ).

So this is equal to ( 0.3439 ), and we're done. That's the probability that it takes fewer than five orders for her to get her first telephone order of the month.

More Articles

View All
3 books that changed my life
We all know that reading is vital for our growth, for our development, but we don’t really have that much time in order to read every single book that we see. And actually, you don’t really need to read that much in order to change your mindset or your be…
How to Build Better Habits
We all brush our teeth. I mean, I hope we do. At some point in our childhood, someone told us that it was really important for us to brush our teeth. And we believed them. We were convinced. Society from then on has largely embraced the act of brushing te…
Creativity break: how do you get into your creative zone? | Khan Academy
[Music] I allow my brain to do the work to get into my creative zone when I have a problem to resolve. Sometimes I just sleep on it, and I let my subconscious mind work through resolving problems and solving problems. Our brains are always at work, like …
Elements and atomic number | Atoms, isotopes, and ions | High school chemistry | Khan Academy
We know that everything in the universe is composed of atoms, but not all atoms are the same. There are many different types of atoms called elements, each with a unique set of physical and chemical properties. Many elements are probably familiar to you; …
Into the Wilderness: Trapping a Wolf | Life Below Zero
♪ [Ricko] We have to hunt and kill to survive. Just like the animals out here. ♪ ♪ ♪ ♪ Most likely the wolves came along and hamstringed it, or they’re right around here somewhere. I’m traveling along with my snow machine, looking for a place to do some w…
Sold My Tesla Stock
What’s a Pilon? It’s Musk here. So, I don’t usually make these kinds of videos, but given the recent and unprecedented price surge of Tesla stock over these last few days, I felt like this would be worth addressing. We could talk about exactly what’s goin…