yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Virus structure and replication | Viruses | High school biology | Khan Academy


3m read
·Nov 10, 2024

In this video, we're going to talk about viruses, which I think are maybe one of the most fascinating things in biology because they have some aspects of living organisms, but we don't consider them living.

But before we go into the details of it, I want you to appreciate what is going on in this picture here. This is a zoomed-in image of HIV, human immunodeficiency virus, emerging from a host cell. In this case, it's an immune cell; it's a white blood cell that it's emerging from. From the scale of a virus, you can see that the cell looks like a whole universe that it is emerging from. This is an important picture because it really gives you a clue about how viruses replicate.

They can't replicate on their own, which is one of the reasons why we don't consider them living. But they do have genetic material, either DNA or RNA, and what they do is they infect a host cell like the one we see here. They use that host cell's machinery to produce more of that virus, to replicate the DNA or the RNA, and to produce the protein that envelops that DNA or RNA to construct the virus. Then it emerges from that cell, and in many cases, it does damage to that cell in the process.

Now, I mentioned that these are non-living infectious particles, and there's a lot of things that you can think about when you think about infections. Sometimes, you've heard the term germs; people think bacteria, they think viruses. But to be very clear, viruses are non-living while bacteria are living. They are unicellular organisms. But let's go into a little bit more depth.

So, as I mentioned, you're going to have some genetic material inside the virus. Let's assume that that is DNA, but it could be RNA. There's a lot of variation in terms of how much genetic material there is. The simplest viruses have only a few genes, while a complex virus can have on the order of 200 genes.

Now, around that genetic material—and I’m really going to be drawing a cross-section here—but you can imagine it in three dimensions, you have protein that essentially makes the surrounding or you could even think about it as the basic structure of the virus. This protein is called the capsid, and all viruses are going to have a capsid. In certain cases, a virus can have an envelope made up of very similar things to a cellular membrane, and they're actually derived from host cells. They allow the virus to attach and penetrate host cells.

So, let’s imagine a host cell here, and let's imagine a viral particle that is able to attach to the host cell. It does so in small parts due to the fact that it has this envelope made up of very similar materials to the cellular membrane—these lipids and glycoproteins. So, it attaches to it, and that first stage where it's really infecting it is called entry, where the genetic material from the virus is able to enter into the cell.

Now, at that point, you have something called replication, where the virus is able to hijack the cellular machinery in order to replicate not just the genetic material. Let's assume that this is DNA, but it could have been RNA as well, but also the material that makes up the capsid, so that protein there. DNA gets transcribed to RNA, which then gets translated to protein at ribosomes. The viral DNA is able to do that to produce these proteins, and then you have assembly, where these things come together.

So, the protein starts to come together with the genetic material all the way until you get to release, where the virus starts to emerge from that cell. We saw a very scary picture of that when we started this video of HIV emerging from an immune cell. If it takes some of the material or if it has an envelope, it will maybe capture some of that from the cellular membrane, some of that material so then it can also have the ability to attach to a future similar type of cell.

More Articles

View All
Why Their Story Matters | The Long Road Home
We all should be aware of every single person who dies fighting for our freedom and democracy around the world. Where we’re going, Sadr City, over two million people lived under a dictator’s boot for 24 years. And we can build a better future for them, f…
Capital vs. consumer goods and economic growth | Microeconomics | Khan Academy
We’ve learned a little bit already about how a production possibilities curve can be used to illustrate the concept of economic growth. Let’s review the definition of economic growth. Then we’re going to go into some more depth about the trade-offs that s…
The Marker | Life Below Zero
The hailstones are returning to Camp from a hunting trip, but without a marker to guide them along the treacherous River, their path home is uncertain. “This is it right here. You see how hard that was? This is just inches off the surface of the water. Y…
Analyzing positive and negative intervals of polynomials
So we have a function f of x that’s written as the product of a bunch of first degree expressions. Now, if we obviously could also view this as a polynomial, especially if we expand this all out, it’ll have our more traditional form. But what’s nice about…
15 Practical Advice for People Under 30
You’re young, and everyone is trying to point you in different directions. The problem is most of them are idiots. A society collapses when the wise listen and the idiots give advice. Those who haven’t walked the path can’t tell you what the journey is li…
15 RULES for RECESSIONS
The economy is a game of musical chairs. The chairs are money. When a recession starts, the music stops, and some people and companies are left without a chair. That’s the situation until the music starts up again. Recessions are periods of time where the…