yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Virus structure and replication | Viruses | High school biology | Khan Academy


3m read
·Nov 10, 2024

In this video, we're going to talk about viruses, which I think are maybe one of the most fascinating things in biology because they have some aspects of living organisms, but we don't consider them living.

But before we go into the details of it, I want you to appreciate what is going on in this picture here. This is a zoomed-in image of HIV, human immunodeficiency virus, emerging from a host cell. In this case, it's an immune cell; it's a white blood cell that it's emerging from. From the scale of a virus, you can see that the cell looks like a whole universe that it is emerging from. This is an important picture because it really gives you a clue about how viruses replicate.

They can't replicate on their own, which is one of the reasons why we don't consider them living. But they do have genetic material, either DNA or RNA, and what they do is they infect a host cell like the one we see here. They use that host cell's machinery to produce more of that virus, to replicate the DNA or the RNA, and to produce the protein that envelops that DNA or RNA to construct the virus. Then it emerges from that cell, and in many cases, it does damage to that cell in the process.

Now, I mentioned that these are non-living infectious particles, and there's a lot of things that you can think about when you think about infections. Sometimes, you've heard the term germs; people think bacteria, they think viruses. But to be very clear, viruses are non-living while bacteria are living. They are unicellular organisms. But let's go into a little bit more depth.

So, as I mentioned, you're going to have some genetic material inside the virus. Let's assume that that is DNA, but it could be RNA. There's a lot of variation in terms of how much genetic material there is. The simplest viruses have only a few genes, while a complex virus can have on the order of 200 genes.

Now, around that genetic material—and I’m really going to be drawing a cross-section here—but you can imagine it in three dimensions, you have protein that essentially makes the surrounding or you could even think about it as the basic structure of the virus. This protein is called the capsid, and all viruses are going to have a capsid. In certain cases, a virus can have an envelope made up of very similar things to a cellular membrane, and they're actually derived from host cells. They allow the virus to attach and penetrate host cells.

So, let’s imagine a host cell here, and let's imagine a viral particle that is able to attach to the host cell. It does so in small parts due to the fact that it has this envelope made up of very similar materials to the cellular membrane—these lipids and glycoproteins. So, it attaches to it, and that first stage where it's really infecting it is called entry, where the genetic material from the virus is able to enter into the cell.

Now, at that point, you have something called replication, where the virus is able to hijack the cellular machinery in order to replicate not just the genetic material. Let's assume that this is DNA, but it could have been RNA as well, but also the material that makes up the capsid, so that protein there. DNA gets transcribed to RNA, which then gets translated to protein at ribosomes. The viral DNA is able to do that to produce these proteins, and then you have assembly, where these things come together.

So, the protein starts to come together with the genetic material all the way until you get to release, where the virus starts to emerge from that cell. We saw a very scary picture of that when we started this video of HIV emerging from an immune cell. If it takes some of the material or if it has an envelope, it will maybe capture some of that from the cellular membrane, some of that material so then it can also have the ability to attach to a future similar type of cell.

More Articles

View All
Multiplying mixed numbers
Let’s see if we can figure out what 2 and 1⁄4 times 3 is. Pause this video and see if you can work that out. All right, now there’s different ways that we could approach this. One way to approach this is to recognize that if I multiply anything times thr…
Locating less obvious y-intercepts on graphs | Grade 8 (TX TEKS) | Khan Academy
So we have the graph of a line shown right over here, and my question to you is: what is the Y intercept of this line? Pause this video and see if you can figure it out yourself. All right, now let’s work through this together. So when we just eyeball it…
How can a private jet make you money?
Can I have two planes, one 420 and then one 48? So you want one airplane that goes from London to Dubai and one airplane that does basically Western Europe? Yeah, my father runs the business. I’m glad that he let me do this dealing. How many hours do you…
How to lose all your friends in life
Have you ever thought to yourself, “Damn, I have way too many friends. I am so popular; I need to start getting rid of people.” Well, in this tutorial, I’m going to teach you how to make everybody you know and love slowly drift away from you over the cour…
Protecting the Okavango Ecosystem | National Geographic
Healthy ecosystems support rich biodiversity. The Okavango Delta hosts one of the most vibrant on Earth. Pristine water from Angola becomes the life force that sustains a vast variety of species. Two on the right! One on the left there! Each plays its par…
My Advice for Each Stage of Life
There’s a life cycle, right? Your teens, your 20s, your 30s, and so on. Every phase is a little bit different, or quite a bit different. People have asked me, uh, in their 20s, what is good advice for their 20s? You are about to go independent. You were d…