yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Euler's Formula: A Proof


4m read
·Nov 3, 2024

Hey guys, this is Matt Kids 101, and today I'm going to be making an experimental math video for some math sessions. So leave a comment below if you have any requests or what you think about these math series, or of course, if you have any questions about the video.

So today, I'm going to be proving Euler's identity, which is that e to the I theta is equal to cosine theta plus I times sine theta. I'm gonna do this by solving differential equations by separating variables. There are other ways of doing this; that's how I'm going to be doing it. I think that it's clearer than using a Taylor series.

So I'm gonna let y equal cosine theta plus I sine theta. So Y is equal to the right side of the statement, and I'm gonna prove that it's equal to the left side of the statement. I'm also gonna keep in mind that Y of 0 is equal to 1 because that's gonna come in handy later. Cosine of 0 is 1, plus sine of I sine of 0, which is 0.

Okay, take the derivative of both sides with respect to theta. So it's going to be dy/dtheta is equal to the derivative of cosine, which is minus sine theta, plus I times the derivative of sine, which is cosine theta.

All right, now I'm going to factor out an I, so that is equal to I times... So I squared is going to be negative 1, so if you bring out an I, this is gonna be I sine theta plus cosine. If you look back, this is exactly what we defined y to be, so it's equal to iy.

All right, who's gonna write that there? We're running out of space. So dy/dtheta is equal to Iy. Now I'm gonna bring... I'm gonna divide both sides by Iy and multiply both sides by dtheta, so we have minus I times 1 over y dy is equal to dtheta.

1 over I is equal to minus I. You can say that 1 over I is equal to I over minus 1, and so I squared is minus 1. When you cross multiply, that's an easy way to check that that floats true.

All right, so I'm going to integrate both sides. I'm going to use an indefinite integral, but there might be other means of doing this. All right, now when I do this, I'm gonna get minus I times Ln of Y is equal to theta plus some arbitrary constant.

Now all we have to do is isolate y, solve for the constants, and check what that's equal to. So I'm going to let Alex do that part.

All right, so now I'm gonna be putting the final touches on this proof and showing you that Y is actually equal to e to the I theta. Okay, so first off, we have this situation right here with an ugly I on an ugly constant there, and we got this I on that side and the natural log of Y here.

So the first step is going to be to isolate y. In order to go about this, first, we're gonna get rid of this mind side. To do that, we just are going to multiply both sides by I because if you do that, you have I times I and then minus that, so that's minus -1. So we just get the natural log of Y.

I'm just gonna write what I did there: I multiplied by I is equal to I theta plus I times some arbitrary constant, which is just some other arbitrary constant. In this case, the arbitrary constant is probably going to be complex; we don't know what it is. So I'm just going to keep that as C, but you really know this isn't the same constant; it's the original constant times I.

Now we can just do e to both sides. So if I do this, then that gives us e to the natural log of Y is just Y. So it's y equals e to the I theta plus C in the top part. In order to prove that this is equal to that, all that's left is to prove that this arbitrary constant right here is actually indeed 0.

To go about doing that, we just need to use our initial condition that we said initially up there. So if we say that Y of 0 is 1, then e to the I times 0 plus C, since this is still our Y function, has to equal 1. I times 0 is 0, so e to the C equals 1.

Then we take the natural log of both sides: C equals the natural log of 1, which is equal to 0. So now, using our initial condition of this function, we prove that Y has to be e to the I theta plus 0. Thus, from here, it finally follows that y is equal to e to the I theta.

So that's how you get rid of the arbitrary constant that comes from separating variables, and you get the final equation for y. All right, so now that Alex demonstrated this right before in the video, I'm gonna show us some cool properties that are useful about this.

The first is an equation that you've probably seen before, but what happens if now that we know this is true, what happens if theta is equal to PI? So on the left side, we have e to the I pi equals cosine of PI, which is negative 1, and then I times sine of pi. Well, sine of pi is 0, thus i times 0 equals 0.

So e to the I pi is equal to negative 1 or e to the I pi plus 1 equals 0. This is easy. It's positive 1 equals 0; all the fundamental constants in math multiplying exponentiation, like the whole shebang.

So another cool thing is if you want to take I to a power that might be hard to do, but with this it should be pretty easy to do. So let's take a look. If we have e to the I pi is equal to negative 1, then you might wanna think about negative 1.

That's equal to I squared. All right, so then you can take the square root of both sides. You can take both sides to the 1 over 2. So then e to the I PI over 2 is equal to I.

If I want to take both sides to the I, let's say when I to the I, then I could say I to the I. Normally that would be pretty hard; I would have no idea how to do that. But in this case, it's going to be e to the I squared PI over 2. I just brought both sides to the I, and I squared is negative 1.

Thus, I to the I is e to the minus PI over 2, which is real. So I'm gonna leave you that; we've got to think about all right. Thanks for watching and subscribing.

More Articles

View All
Fire in ZERO-G!!
I’m about to experience weightlessness for the first time. Oh my god! Oh my god that is so strange. Oh my god this is totally freaky; this is way better than I expected. I’m just gonna say that right now. Um I’m going up to the ceiling, and here we are. I…
Whether or not you should go to college (I never went)
What’s up you guys, it’s Graham here. So, I get hit up all the time from people who are thinking about maybe skipping college, or maybe going to college, or are asking me whether or not it’s worth it for them to go, or if it’s a waste of time. So, I’m goi…
15 Mistakes You Make In Your 30s
Your 30s are a time of transition and change. You had 10 years of trial and error, and now it’s time to get serious. These are 15 mistakes you can’t afford to make anymore. Welcome to Alux. Number one: Not thinking of retirement. Newsflash! If you only r…
The BEST ways to invest your first $1000
What’s up you guys? It’s Graham here. So this has got to be one of my most requested videos, especially for people that are just starting out or don’t have a lot of money saved up. That is how to invest your first $1,000. This amount, when you’re just st…
Surviving an Alligator Attack | Something Bit Me!
Back in a Florida river, an alligator has Fred Langdale dead in its sights and is approaching quickly. So in that moment, I’m thinking, what can I do? What can I do? Some of this stuff I’ve already thought about ahead of time because I’m in the water all …
Charlie Munger's SCARY Inflation Warning (2022)
What makes life interesting is we don’t know how it’s going to work out. I think we do know we’re flirting with serious trouble. Inflation is at such high levels right now that those of us under the age of 40 have never even lived through a period of such…