yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Presidential precedents of George Washington | US government and civics | Khan Academy
Hi, this is S, and I’m here with Jeffrey Rosen, who’s the head of the National Constitution Center in Philadelphia. In the first video, we did an overview of Article Two of the Constitution, which covers the powers of the presidency. Now we’re going to ju…
Intro to radioactive decay | Physics | Khan Academy
What comes to your mind when you hear the word radioactive? Well, for me, it was this danger, right? But in this video, we’re going to try to understand what exactly is radioactive or what does it mean and why is it so dangerous and how can the same thing…
Reacting to Myself: Living On $1.6 Million A Year In Los Angeles | Millennial Money
What’s up, you guys? It’s Graham here, and wow, what a time to be alive! We have officially entered the matrix. This is because I was just featured on the show Millennial Money by CNBC Make It. For those that are not aware of the significance of this, let…
Bird Head Tracking
Hey, it’s me Destin, and uh, yesterday I made a video about chicken head tracking and a chicken’s ability to keep his head stabilized as his body moves. He keeps it in one spot. Well, a very unfortunate thing happened today on my way home. Unfortunately,…
Nelly - Ride Wit Me (Official Music Video) ft. St. Lunatics
[MURPHY LEE] I CAN’T JUST DRIVE THE HUMMER? - [KYJUAN] HOLD ON HOLD ON HOLD ON HOLD ON - [MURPHY LEE] I DON’T WANNA GET MY RIMS DIRTY ♪ OH WHY DO I LIVE THIS WAY? ♪ ♪ OH IT MUST BE THE MONEY ♪ ♪ IF YOU WANNA TAKE A RIDE WITH ME ♪ - OH! ♪ THREE WHEELING IN…
5 FREE Ways to Get Better With Money
Hey guys and welcome back to the channel. Today we’re going to be discussing five awesome tips that will help you get better with money that are completely free. No fluff! I’m not going to tell you to go fill in surveys for 10 hours. I’m going to tell you…