yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Worked example: Calculating solubility from Kₛₚ | Equilibrium | AP Chemistry | Khan Academy
[Instructor] Let’s calculate the molar solubility of calcium fluoride if the Ksp value for calcium fluoride is 3.9 times 10 to the negative 11th at 25 degrees Celsius. The first step is to write the dissolution equation for calcium fluoride. So, solid c…
A String of Shark Attacks in San Diego | When Sharks Attack
[Music] It’s just a really tight-knit ocean loving community. Uh, everybody generally has the same sort of healthy ocean lifestyle vibe. It’s what makes this area so unique. Scott Bass has called San Diego home for over 40 years. “I love living here; you…
Building a Marsbase is a Horrible Idea: Let’s do it!
From hostile deserts, to lonely islands and the highest mountains, wherever there is space to expand into, humans do so. So, it’s hardly surprising that we’re already making preparations to set foot on Mars and to create the first permanent colony outside…
Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy
[Instructor] So we have two vectors here, vector A and vector B. And what we’re gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And …
The Rarest & Most Expensive Watches On Earth - Patek, F.P. Journe, Audemars Piguet, & MORE
[Music] Well, well, well, everybody, Mr. Wonderful here in a very special magical place. If you’re talking watches, with two great watch friends—first of all, Paul Boutros, the legendary auctioneer for very high-end watches. The Phillips auction is legend…
Searching For Life in Volcanoes and Other Extreme Environments | Nat Geo Live
JEFFREY MARLOW: As a scientist, we often go to some of the most extreme places on our planet to collect microbes, bring ‘em back, understand what they’re doing and how they work. These types of organisms can actually broaden our search for life beyond ear…