yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
I got sued by Apple.
So, Apple is now officially suing me for not taking down that credit card video. They served me with a cease and desist letter about 48 hours after I posted that video. I hired an attorney who claimed that this video was fair use. We responded back, and t…
Not The Confederate Flag?
This is not the confederate national flag: When the United States split in twain during the Civil War, this was the first flag her rebel half used: The Bonnie Blue, which she copied from the Republic of West Florida. No, really. This country existed: a bo…
Coolest Concert Ever? Hear Ice Instruments Play Beautiful Music | Short Film Showcase
Is there anyone here who does not understand Swedish? Okay, it was about 20 years ago when I built my first ice musical instrument on top of a mountain. I tightened the strings, and I plucked on the wires, and I heard the sound coming out from inside the…
The Times When Paranoia Fueled Technological Advancement
We’re here to announce our pills. Yes, brain pills. Yes, make you smart. Dalton plus Michel pills.com brain pills. Yes, smart guy brain pills. They will protect you from overb believing in conspiracy. [Music] All right, this is Dalton plus Michael, and t…
The Price of Adventure | Podcast | Overheard at National Geographic
Put yourself for a moment in the snow boots of a young Max Lowe. Several years ago, he was on an expedition with three of the world’s most famous mountaineers: author John Krakauer, professional snowboarder Jeremy Jones, and the leader of the North Face a…
Hovering a Helicopter is Hilariously Hard - Smarter Every Day 145
Hey, it’s me Destin, welcome back to Smarter Every Day. If there is one thing that I learnt from the backwards bicycle experiment, it is that knowledge is not understanding. So a couple of years ago when I made the YouTube series about helicopter physics,…