yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Helicopter Physics Series #6 - LASER HELICOPTER BLADES - Smarter Every Day 49
(Carl) We have our bolt and thread here to balance, and we can run the nut in and out to get the perfect balance. (Destin) That’s pretty smart. I bet a smart guy came up with that. (Carl) Oh… a… brilliant person. [laugh] Oh hey. Yeah. You see that? You …
How To Make Time Work For You
You overestimate what you can do in a day and underestimate what you can do in a year. That’s the main reason why you never have enough time. But there is a way to take control of your time and make it work for you. Let us explain. Welcome to a lux. When…
Woodpeckers Defend Their Food Supply | National Geographic
[music playing] NARRATOR: Day breaks over the lovely forested south rim of the canyon, lighting up a dead pine that would seem to have little purpose. But this pine is the central bank and trust of the acorn woodpecker. And every inch is studded with nea…
Meditation | The Powerful Effects Of Cleaning
Krishnamurthy said that you cannot reach a meditative state when your living environment is not in perfect order. This is debatable, of course, especially if you read the stoic work Meditations, in which Marcus Aurelius states that we can take refuge in o…
Rappelling down a cliff for the first time | Never Say Never with Jeff Jenkins
JEFF: Wow. Okay. Yeah. It’s a lot tougher to see. Just trying to keep the feet straight. This is a lot right now. I’m trying to keep my footing, trying to let the rope out at the right speed. And I’m trying to not think about falling to the bottom. Like I…
Senate confirmation as a check on the judicial branch | US government and civics | Khan Academy
When we think about how the executive or the legislative branch have some form of check or power over the judicial branch, a key element of that is the executive’s ability to appoint judges to federal courts, including the U.S. Supreme Court. But it’s not…