yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
The Mother Of All Crashes Is Coming
What’s up, guys? It’s Graham here! So normally, people celebrate with champagne, but I am celebrating today with iced coffee, now for sale at bankrollcoffee.com. Because in the last week, the stock market indexes have hit yet another all-time high. We’ve…
Lecture 5 - Competition is for Losers (Peter Thiel)
All right, all right, good afternoon. Uh, today’s speaker is Peter Thiel. Peter was the founder of PayPal, Palantir, and Founders Fund, and has invested in, uh, most of the tech companies in Silicon Valley. And he’s going to talk about strategy and compet…
Why is Deadly Weather Mesmerizing? | StarTalk
Well, in the same way that CNN does very well in their ratings when there’s war, the Weather Channel does really well when there’s extreme weather. Right. So people love watching extreme weather—the tornadoes—it’s mesmerizing. Hurricanes. Absolutely. And …
What Game Theory Reveals About Life, The Universe, and Everything
This is a video about the most famous problem in game theory. Problems of this sort pop up everywhere, from nations locked in conflict to roommates doing the dishes. Even game shows have been based around this concept. Figuring out the best strategy can m…
The Cartier Santos Dumont Watch
This is the Dumont, the Santos Dumont. The rewind, you look closely at the dial, the numbers are in reverse, and it’s completely engineered. The hands go backwards. Yes, that sounds crazy, but it’s true. This is the K Platinum Crash Skeleton. Now, the ru…
How to Measure Happiness Around the World | National Geographic
Can you measure happiness? It’s not an easy task, but every year the Gallup World Poll tries to estimate how happy people are in a hundred and forty countries around the world. Where do they even start? Frequency of smiley face emojis? Number of hugs give…