yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Start Your Watch Collection | What You Should Consider Before Purchasing
I guess we should start with Dubai Watch Week. I just watched your panel discussion, and I think a lot of people would be surprised to see high tech being matched with watchmaking. Do you think people are surprised by that? Well, I think it’s high time c…
Vector fields, introduction | Multivariable calculus | Khan Academy
Hello everyone! So, in this video, I’m going to introduce Vector Fields. Now, these are concepts that come up all the time in multivariable calculus, and that’s probably because they come up all the time in physics. You know, it comes up with fluid flow,…
15 Daily Rituals for Cultivating a Growth Mindset
Many people ask themselves what they should do to improve their mindset and reach a point where they can be productive, get things done, and be the best version of themselves. But few of them actually focus on what it takes to improve their mindset. And w…
Dostoevsky - Never Lie to Yourself
In The Brothers Karamazov, Fyodor Dostoevsky wrote, “Above all, don’t lie to yourself. The man who lies to himself and listens to his own lie comes to a point that he cannot distinguish the truth within him, or around him, and so loses all respect for him…
This world is a mess… and Nietzsche saw it coming.
The infamous philosopher Friedrich Nietzsche famously proclaimed, “God is dead. God remains dead. And we have killed him,” a statement that would become one of his most memorable quotes. These words point to the religious decline that existed during Nietz…
The Placebo Effect: Mind Over Matter
The mind can hold tremendous power over our bodies. People walking over burning coal with no sign of pain, seemingly average people achieving feats of superhuman strength, or even just the everyday person overcoming tremendous adversity. We’ve all heard t…