yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Finding decreasing interval given the function | AP Calculus AB | Khan Academy
So we have the function ( f(x) = x^6 - 3x^5 ) and we want to know over what intervals is ( f ) decreasing. We’re going to do it without even having to graph ( y = f(x) ). The way we do that is we look at the derivative of ( f ) with respect to ( x ) and t…
Comparing European and Native American cultures | US history | Khan Academy
In the first years of interaction between Native Americans and Europeans, there were a lot of aspects of each other’s cultures that each group found, well, just plain weird. Europeans and Native Americans looked, dressed, and thought differently in fundam…
2017 Berkshire Hathaway Annual Meeting (Full Version)
Thank you and good morning. Duh, that’s Charlie. I’m Warren. You can tell us apart because, uh, he can hear and I can see. That’s why we, uh, work together so well. We usually have our specialty. Uh, I’d like to welcome you to, uh, we got a lot of out-of…
Howard Marks & Joel Greenblatt on Value Investing
So I don’t think the reason people don’t beat the market is because the market is efficient or even close to efficient or not emotional. It’s very emotional. Or that it can’t be done. There’s all kinds of institutional and agency reasons and tons of other…
Black Women and the Suffrage Movement | 100 Years After Women's Suffrage
Good afternoon! I’m Deborah Adam Simmons, Executive Editor for History and Culture at National Geographic. I am thrilled that we will have a conversation this afternoon with historian Martha Jones and writer Michelle Duster about the role of African-Ameri…
David Rusenko at Startup School 2012
Well, thanks for having me, guys. Uh, you can hear me all right? Cool. So, I wanted to start by just uh, going over the Weebly story a little bit, telling you uh, kind of how we got to where we got to today and some of the lessons we learned along the wa…