yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Ecotone | Short Film Showcase | National Geographic
An ecotone is like a frontier where elements usually separated thrive in friction, interact, communicate. [Music] If you’re anything like me, this sound should make you very uncomfortable, unpleasant. But this is what 55% of the population hears daily wo…
The Top 5 BEST Investing Apps
What’s up you guys, it’s Graham here. So, as usual, I always read all of the comments, and if you guys ask me to make a specific video, I will go ahead, I will listen, I will make the video. And this video is exactly that, because recently I’ve received n…
The Future of Humanity, Maybe
You know monkey has been able to control a computer with its brain. Just yeah, so your brain is composed of neurons. Neurons connect together and form a network that can talk to each other through synapses. They’re the connection points between neurons an…
Fleeting Grace of the Habitable Zone | Cosmos: Possible Worlds
We’ve got the biggest dreams of putting our eyes on other worlds, traveling to them, making them our home. But how do we get there? The stars are so far apart. We would need sailing ships that could sustain human crews over the longest haul of all time. T…
How a New Generation Is Saving Zambia's Lions | National Geographic
There’s no sound in the wild that is as amazing as they rolled a lion in Zambia. We had so many stories about them growing up, how just hearing them roll can bring down an entire manhood. I was young; I used to be out of stories about Laila’s, how they ea…
Tips For Technical Startup Founders | Startup School
[Music] Welcome everyone to “How to Build and Succeed as a Technical Founder” for the Startup School talk. Quick intro, I’m Diana, who I’m currently a group partner at YC. Previously, I was a co-founder and CTO for Azure Reality, which was a startup buil…