yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating concentration using the Beer–Lambert law | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

So I have a question here from the Cots, Trickle, and Townsend Chemistry and Chemical Reactivity book, and I got their permission to do this. It says a solution of potassium permanganate has an absorbance of 0.53 when measured at 540 nanometers in a 1 centimer cell. What is the concentration? What is the concentration of the potassium permanganate?

Prior to determining the absorbance for the unknown solution, the following calibration data were collected for the spectrophotometer. The way that we would tackle this is we know that there is a linear relationship between absorbance and concentration. We could describe it something like this: that absorbance is going to be equal to some slope times our concentration, and you could say some y-intercept.

If we're purist about it, then the y-intercept should be zero because at a zero concentration, you should have a zero absorbance. But the way that chemists would typically do it is that they would put these points into a computer and then have the computer do a linear regression. You could also do that by hand, but that's a little bit out of the scope of this video.

I did that; I went to Desmos and I typed in the numbers that they gave, and this is what I got. So I just typed in these numbers, and then it fit a linear regression line to it, and it got these parameters: m is equal to this, and b is equal to this.

Now we could say significant figures; it seems like the small significant figures here we have are three, but we could just view the m and the b as intermediate numbers in our calculations. So what I'm going to do is I'm going to use this m and b, and then my final answer I'm going to round to three significant figures.

So what this tells us is that our absorbance is going to be 5.65333 times our concentration minus 0.008. Now they've given us what a is. Let me get rid of all of this stuff here. They told us that our absorbance is 0.539. So we know that 0.539 is equal to 5.65333c minus 0.0086.

And then if you want to solve for c, let's see. We could add this to both sides first, so you get 0.539 plus 0.0086 is equal to 5.65333c. Then divide both sides by this, and you would get c is equal to, or is going to be approximately equal to—be a little careful; all of these would really be approximates.

c is going to be approximately equal to 0.539 plus 0.0086 divided by 5.65333. Of course, we want to round to three significant figures. All right. 0.539 plus 0.0086 is equal to that divided by 5.65333 is equal to this.

So if we go three significant figures, this is going to be 0.0969. So I would write the concentration is approximately 0.0969 molar.

More Articles

View All
Peatlands Critical In Climate Change Fight | National Geographic
[Music] Nice. Yeah, really. PC, my name is Brett Azhagi, and I’m a postdoctoral researcher. We’re here to study the peatlands; you compare it to other soils. Peat is really carbon dense; it’s made up of partially decomposed plant material. All the carbon…
MY FIRST JOB l #shorts
I was in high school, and I took a job in an ice cream parlor. I did it because the girl I was really interested in, in my grade 11 class, was working at the shoe store across from this ice cream parlor. I got hired as an ice cream scooper, so I’d sample …
Your Money Is Losing Value | DO THIS NOW
What’s up you guys? It’s Graham here. So today we gotta have the talk. I understand this might be a bit uncomfortable for somebody to listen to, and it’s not easy for me to talk so openly about this, but everyone needs to learn about this at some point be…
The greenhouse effect | Physics | Khan Academy
Our Earth’s surface temperature is somewhere close to 15° C—nice, cozy, and warm for us living beings. But what keeps us so warm? Well, my instinctive answer is that it’s the sun, right? But it actually gets more interesting. Our atmosphere has these gase…
How to break social media addiction and actually start living
When you’re on the bus, waiting at the queue, or simply walking down the street, do you often find yourself taking up your phone? Constantly looking at your phone will prevent you from being aware of what’s happening around you, and this is not only physi…
Lions 360° | National Geographic
It is not often a mother has to lead her cub away from the pride, but it happens. This is Gibson, who has already lost a brother. His mother, knowing what might happen if they return, is always on the lookout. There’s a thread out there. This is Paula. H…