yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

An object is moving along a line. The following graph gives the object's velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out.

All right, now let's do it together. First, we just need to make sure we're reading this carefully because they're not asking if the velocity is increasing, decreasing, or neither. They're saying is the object speeding up, slowing down, or neither? So they're talking about speed, which is the magnitude of velocity. You could think of it as the absolute value of velocity, especially when we're thinking about it in one dimension here.

So even though they're not asking about velocity, I'm actually going to answer both so that we can see how sometimes they move together—velocity and speed—but sometimes they might work differently; one might be increasing while the other might be decreasing. If we look at this point right over here, where our velocity is two meters per second, the speed is the absolute value of velocity, which would also be two meters per second.

We can see that the slope of the velocity-time graph is positive. So our velocity is increasing, and the absolute value of our velocity, which is speed, is also increasing. A moment later, our velocity might be 2.1 meters per second, and our speed would also be 2.1 meters per second. That seems intuitive enough.

Now we get the other scenario. If we go to this point right over here, our velocity is still positive, but we see that our velocity-time graph is now downward sloping. So our velocity is decreasing because of that downward slope, and the absolute value of our velocity is also decreasing. Right at that moment, our speed is 2 meters per second, and then a moment later, it might be 1.9 meters per second.

All right, now let's go to this point. This point is really interesting. Here, we see that our velocity—the slope of the tangent line—is still negative, so our velocity is still decreasing. But what about the absolute value of our velocity, which is speed? Well, if you think about it, a moment before this, we were slowing down to get to a zero velocity, and a moment after this, we're going to be speeding up to start having negative velocity.

You might say, "Wait, speeding up for negative velocity?" Remember, speed is the absolute value. So if your velocity goes from zero to negative one meters per second, your speed just went from zero to one meter per second. Therefore, we're slowing down here, and we're speeding up here, but right at this moment, neither is happening. We are neither speeding up nor slowing down.

Now, what about this point here? The slope of our velocity-time graph, or the slope of the tangent line, is still negative. So our velocity is still decreasing. But what about speed? Well, our velocity has already become negative, and it's becoming more negative, so the absolute value of velocity, which is 2 meters per second, is increasing at that moment in time. So our speed is actually increasing.

So notice here, you see a difference.

Now, what about this point? Well, the slope of the tangent line here of our velocity-time graph is zero right at that point. So that means that our velocity is not changing. You could say velocity is not changing, and if speed is the absolute value or the magnitude of velocity, well, that will also be not changing. So we would say speed is neither slowing down nor speeding up.

Last but not least, this point right over here—the slope of the tangent line is positive, so our velocity is increasing. What about speed? Well, the speed here is two meters per second; remember, it would be the absolute value of the velocity.

Here, the absolute value is actually going down if we forward in time a little bit. So our speed is actually decreasing; we are slowing down as our velocity gets closer and closer to zero because the absolute value is getting closer and closer to zero.

More Articles

View All
Dividing quadratics by linear expressions with remainders | Algebra 2 | Khan Academy
So if you’ve been watching these videos, you know that we have a lot of scenarios where people seem to be walking up to us on the street and asking us to do math problems, and I guess this will be no different. So let’s say someone walks up to you on the…
Mayans and Teotihuacan | World History | Khan Academy
The Mayan civilization is one of the most long-lasting civilizations, not just in the ancient Americas, but in the world in general. You can see the rough outline here on this map of where the Mayan civilization occurred. You can see it has the Yucatan Pe…
The Fall of Empires | World History | Khan Academy
Steve: “What are we doing here? Hey, sell, we’re going to look at this question of why do Empires fall. For those of you who don’t know, Steve Shrer, he is a world history fellow here at Khan Academy, and also a former world history teacher. So, what we …
Continuity and change in the postwar era | Period 8: 1945-1980 | AP US History | Khan Academy
The era from 1945 to 1980 was action-packed, to say the least. During this period, the United States experienced the baby boom, the civil rights movement, the tumultuous 1960s, and the quagmire of Vietnam. This era was also riddled with contradictions; a …
Where is Scandinavia?
Scan-duh-nay-vee-ah! Look at this Arctic wonderland – fjords, saunas, fjords, lutefisk, blondes, vikings, blond vikings?, fjords, Ikea, babies in government issued boxes, Santa, death metal, and fjords. But like, where exactly are the borders of Scandina…
In Your Face - Mind Field (Ep 7)
If I asked you to show me a picture of your mother, you wouldn’t show me a, uh, closeup shot of her elbow. But you could, and you’d be right. That would be a photo of her, but it wouldn’t feel right because it’s not her face. That’s how important faces ar…