yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

An object is moving along a line. The following graph gives the object's velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out.

All right, now let's do it together. First, we just need to make sure we're reading this carefully because they're not asking if the velocity is increasing, decreasing, or neither. They're saying is the object speeding up, slowing down, or neither? So they're talking about speed, which is the magnitude of velocity. You could think of it as the absolute value of velocity, especially when we're thinking about it in one dimension here.

So even though they're not asking about velocity, I'm actually going to answer both so that we can see how sometimes they move together—velocity and speed—but sometimes they might work differently; one might be increasing while the other might be decreasing. If we look at this point right over here, where our velocity is two meters per second, the speed is the absolute value of velocity, which would also be two meters per second.

We can see that the slope of the velocity-time graph is positive. So our velocity is increasing, and the absolute value of our velocity, which is speed, is also increasing. A moment later, our velocity might be 2.1 meters per second, and our speed would also be 2.1 meters per second. That seems intuitive enough.

Now we get the other scenario. If we go to this point right over here, our velocity is still positive, but we see that our velocity-time graph is now downward sloping. So our velocity is decreasing because of that downward slope, and the absolute value of our velocity is also decreasing. Right at that moment, our speed is 2 meters per second, and then a moment later, it might be 1.9 meters per second.

All right, now let's go to this point. This point is really interesting. Here, we see that our velocity—the slope of the tangent line—is still negative, so our velocity is still decreasing. But what about the absolute value of our velocity, which is speed? Well, if you think about it, a moment before this, we were slowing down to get to a zero velocity, and a moment after this, we're going to be speeding up to start having negative velocity.

You might say, "Wait, speeding up for negative velocity?" Remember, speed is the absolute value. So if your velocity goes from zero to negative one meters per second, your speed just went from zero to one meter per second. Therefore, we're slowing down here, and we're speeding up here, but right at this moment, neither is happening. We are neither speeding up nor slowing down.

Now, what about this point here? The slope of our velocity-time graph, or the slope of the tangent line, is still negative. So our velocity is still decreasing. But what about speed? Well, our velocity has already become negative, and it's becoming more negative, so the absolute value of velocity, which is 2 meters per second, is increasing at that moment in time. So our speed is actually increasing.

So notice here, you see a difference.

Now, what about this point? Well, the slope of the tangent line here of our velocity-time graph is zero right at that point. So that means that our velocity is not changing. You could say velocity is not changing, and if speed is the absolute value or the magnitude of velocity, well, that will also be not changing. So we would say speed is neither slowing down nor speeding up.

Last but not least, this point right over here—the slope of the tangent line is positive, so our velocity is increasing. What about speed? Well, the speed here is two meters per second; remember, it would be the absolute value of the velocity.

Here, the absolute value is actually going down if we forward in time a little bit. So our speed is actually decreasing; we are slowing down as our velocity gets closer and closer to zero because the absolute value is getting closer and closer to zero.

More Articles

View All
Limits of combined functions: piecewise functions | AP Calculus AB | Khan Academy
We are asked to find these three different limits. I encourage you, like always, to pause this video and try to do it yourself before we do it together. So when you do this first one, you might just try to find the limit as x approaches negative 2 of f o…
Distillation curves | Intermolecular forces and properties | AP Chemistry | Khan Academy
[Instructor] In this video, we’re gonna dig a little bit deeper into distillation, and in particular, we’re gonna learn how to construct and interpret distillation curves. So let’s say we’re trying to distill roughly 50 milliliters. That is 50% methyl a…
How to quickly get out of a rut
So pretend you’re this guy, and you were really productive earlier the month. In fact, you are kind of killing it. You’re reading lots of books, hitting the gym consistently, and actually getting your work in on time. But then something happened. Maybe y…
The Truth About Toilet Swirl - Southern Hemisphere
Today, we’re trying something that’s never been done before. I have made this video and Destin has made a video on Smarter Every Day, and we want you to play them both at the same time. So there’s a link to his video down in the description, so find a way…
"Where Love Is Illegal": Chronicling LGBT Stories of Love and Discrimination (Part 3) | Nat Geo Live
Our activism is continuing to evolve. In the next phase of Where Love Is Illegal, we are enduring to leverage our storytelling skills so we can further amplify the voices of LGBTQI+ communities around the world. And we’re doing just that in Jamaica. Last …
THIS is what it will cost to fight Climate Change
But I know you. You focus on the big picture, what’s practical. So when you look at what it’s going to take globally to fight climate change in terms of who has the money, what their motivations are, and what exactly it’s going to take to unlock those fun…