yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

An object is moving along a line. The following graph gives the object's velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out.

All right, now let's do it together. First, we just need to make sure we're reading this carefully because they're not asking if the velocity is increasing, decreasing, or neither. They're saying is the object speeding up, slowing down, or neither? So they're talking about speed, which is the magnitude of velocity. You could think of it as the absolute value of velocity, especially when we're thinking about it in one dimension here.

So even though they're not asking about velocity, I'm actually going to answer both so that we can see how sometimes they move together—velocity and speed—but sometimes they might work differently; one might be increasing while the other might be decreasing. If we look at this point right over here, where our velocity is two meters per second, the speed is the absolute value of velocity, which would also be two meters per second.

We can see that the slope of the velocity-time graph is positive. So our velocity is increasing, and the absolute value of our velocity, which is speed, is also increasing. A moment later, our velocity might be 2.1 meters per second, and our speed would also be 2.1 meters per second. That seems intuitive enough.

Now we get the other scenario. If we go to this point right over here, our velocity is still positive, but we see that our velocity-time graph is now downward sloping. So our velocity is decreasing because of that downward slope, and the absolute value of our velocity is also decreasing. Right at that moment, our speed is 2 meters per second, and then a moment later, it might be 1.9 meters per second.

All right, now let's go to this point. This point is really interesting. Here, we see that our velocity—the slope of the tangent line—is still negative, so our velocity is still decreasing. But what about the absolute value of our velocity, which is speed? Well, if you think about it, a moment before this, we were slowing down to get to a zero velocity, and a moment after this, we're going to be speeding up to start having negative velocity.

You might say, "Wait, speeding up for negative velocity?" Remember, speed is the absolute value. So if your velocity goes from zero to negative one meters per second, your speed just went from zero to one meter per second. Therefore, we're slowing down here, and we're speeding up here, but right at this moment, neither is happening. We are neither speeding up nor slowing down.

Now, what about this point here? The slope of our velocity-time graph, or the slope of the tangent line, is still negative. So our velocity is still decreasing. But what about speed? Well, our velocity has already become negative, and it's becoming more negative, so the absolute value of velocity, which is 2 meters per second, is increasing at that moment in time. So our speed is actually increasing.

So notice here, you see a difference.

Now, what about this point? Well, the slope of the tangent line here of our velocity-time graph is zero right at that point. So that means that our velocity is not changing. You could say velocity is not changing, and if speed is the absolute value or the magnitude of velocity, well, that will also be not changing. So we would say speed is neither slowing down nor speeding up.

Last but not least, this point right over here—the slope of the tangent line is positive, so our velocity is increasing. What about speed? Well, the speed here is two meters per second; remember, it would be the absolute value of the velocity.

Here, the absolute value is actually going down if we forward in time a little bit. So our speed is actually decreasing; we are slowing down as our velocity gets closer and closer to zero because the absolute value is getting closer and closer to zero.

More Articles

View All
Showing My Desk to Adam Savage
Hey, Vsauce. Michael here. The eye is a mirror. When you look into an eye, you can see a small, tiny version of yourself that kind of looks like a doll version of yourself. The Latin word for a little doll is “pupilla.” That’s where we get the word “pupil…
Cooling Cities By Throwing Shade | Podcast | Overheard at National Geographic
It’s a hot breezy summer day in Los Angeles. I’m just recording the sounds of my neighborhood here in the Huntington Park neighborhood. You might see a woman named Eileen Garcia driving from tree to tree, trying to give them some much-needed relief from t…
Three Awesome High School Science Projects
By the end of this video, one of these three high school seniors will be awarded two hundred and fifty thousand dollars for their original scientific research. Now, the way this went down was, Regeneron, the sponsor of this video, invited me out to Washi…
Part-to-whole relationships in text structure | Reading | Khan Academy
Hello readers. Today we’re going to be talking about how smaller sections of text work together to support the whole text. But first, let us consider Voltron. It is a giant robot made up of five smaller robots, each one piloted by a person. Five friends, …
Limitless with Chris Hemsworth | Official Trailer | Disney+
(Wind blowing) - You’re probably asking yourself why I’m dangling off a rope a thousand feet off the ground. I’m asking the same question. Well, Disney wanted to make a show about longevity. Turns out this has something to do with it. Here we go. (Dramat…
The Technical Advisor for Silicon Valley on HBO: Ed McManus
Okay, so today we have Ed McManis. He was a technical adviser for Silicon Valley, uh, on HBO season 3. Um, so Ed, what’s your background? Okay, so, uh, I was a technical co-founder of a Y Combinator startup called Yard Sale. Um, and, uh, we launched two …