yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

An object is moving along a line. The following graph gives the object's velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out.

All right, now let's do it together. First, we just need to make sure we're reading this carefully because they're not asking if the velocity is increasing, decreasing, or neither. They're saying is the object speeding up, slowing down, or neither? So they're talking about speed, which is the magnitude of velocity. You could think of it as the absolute value of velocity, especially when we're thinking about it in one dimension here.

So even though they're not asking about velocity, I'm actually going to answer both so that we can see how sometimes they move together—velocity and speed—but sometimes they might work differently; one might be increasing while the other might be decreasing. If we look at this point right over here, where our velocity is two meters per second, the speed is the absolute value of velocity, which would also be two meters per second.

We can see that the slope of the velocity-time graph is positive. So our velocity is increasing, and the absolute value of our velocity, which is speed, is also increasing. A moment later, our velocity might be 2.1 meters per second, and our speed would also be 2.1 meters per second. That seems intuitive enough.

Now we get the other scenario. If we go to this point right over here, our velocity is still positive, but we see that our velocity-time graph is now downward sloping. So our velocity is decreasing because of that downward slope, and the absolute value of our velocity is also decreasing. Right at that moment, our speed is 2 meters per second, and then a moment later, it might be 1.9 meters per second.

All right, now let's go to this point. This point is really interesting. Here, we see that our velocity—the slope of the tangent line—is still negative, so our velocity is still decreasing. But what about the absolute value of our velocity, which is speed? Well, if you think about it, a moment before this, we were slowing down to get to a zero velocity, and a moment after this, we're going to be speeding up to start having negative velocity.

You might say, "Wait, speeding up for negative velocity?" Remember, speed is the absolute value. So if your velocity goes from zero to negative one meters per second, your speed just went from zero to one meter per second. Therefore, we're slowing down here, and we're speeding up here, but right at this moment, neither is happening. We are neither speeding up nor slowing down.

Now, what about this point here? The slope of our velocity-time graph, or the slope of the tangent line, is still negative. So our velocity is still decreasing. But what about speed? Well, our velocity has already become negative, and it's becoming more negative, so the absolute value of velocity, which is 2 meters per second, is increasing at that moment in time. So our speed is actually increasing.

So notice here, you see a difference.

Now, what about this point? Well, the slope of the tangent line here of our velocity-time graph is zero right at that point. So that means that our velocity is not changing. You could say velocity is not changing, and if speed is the absolute value or the magnitude of velocity, well, that will also be not changing. So we would say speed is neither slowing down nor speeding up.

Last but not least, this point right over here—the slope of the tangent line is positive, so our velocity is increasing. What about speed? Well, the speed here is two meters per second; remember, it would be the absolute value of the velocity.

Here, the absolute value is actually going down if we forward in time a little bit. So our speed is actually decreasing; we are slowing down as our velocity gets closer and closer to zero because the absolute value is getting closer and closer to zero.

More Articles

View All
Peter Lynch: How to Find THE BEST Stocks to Buy
You shouldn’t be intimidated. Everyone can do well in the stock market. You have the skills, you have the intelligence. It doesn’t require any education; all you have to have is patience. Do a little research; you’ve got it. Don’t worry about it; don’t pa…
"America's Best Idea" - President Obama on National Parks | National Geographic
Two of your predecessors felt very much the same thing, didn’t they? Teddy Roosevelt walked these very trails through these redwood trees along with John Muir, the father of the American conservation movement, and these granite mountains. They lit a fire …
The elements of a story | Reading | Khan Academy
Hello readers! I’m going to draw you a map right now, and it’s going to look like I’ve drawn a mountain. But it’s not a map of a mountain; it’s a map of a story. What you’re saying: how do you map a story? What makes a story pointy? These are great quest…
The Poverty of Compromise
This idea of questioning things that he, the two you thought were unassailable in a particular domain, for millennia people were wondering about the best way to conceive of what democracy is. Even Plato had this idea of what is democracy, and he had the …
Saving Sea Turtles in the Solomon Islands | Short Film Showcase
[Music] [Music] [Music] The first time I came here was in 2001, and it was just like yesterday. The first time I arrived here, I was so, so amazed that nature came so, so close, and so it really touches [Music] me. There are two species of sea turtles …
5 Ways To Have 10x More Energy Throughout The Day
Hey, it’s Joey. Welcome to Better Ideas! Have you ever wanted to have just like uncomfortable amounts of energy? Do you lack the necessary energy to carry out basic daily tasks, like going to the gym, doing your homework, doing the laundry? A lot of peopl…