yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy


3m read
·Nov 11, 2024

An object is moving along a line. The following graph gives the object's velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out.

All right, now let's do it together. First, we just need to make sure we're reading this carefully because they're not asking if the velocity is increasing, decreasing, or neither. They're saying is the object speeding up, slowing down, or neither? So they're talking about speed, which is the magnitude of velocity. You could think of it as the absolute value of velocity, especially when we're thinking about it in one dimension here.

So even though they're not asking about velocity, I'm actually going to answer both so that we can see how sometimes they move together—velocity and speed—but sometimes they might work differently; one might be increasing while the other might be decreasing. If we look at this point right over here, where our velocity is two meters per second, the speed is the absolute value of velocity, which would also be two meters per second.

We can see that the slope of the velocity-time graph is positive. So our velocity is increasing, and the absolute value of our velocity, which is speed, is also increasing. A moment later, our velocity might be 2.1 meters per second, and our speed would also be 2.1 meters per second. That seems intuitive enough.

Now we get the other scenario. If we go to this point right over here, our velocity is still positive, but we see that our velocity-time graph is now downward sloping. So our velocity is decreasing because of that downward slope, and the absolute value of our velocity is also decreasing. Right at that moment, our speed is 2 meters per second, and then a moment later, it might be 1.9 meters per second.

All right, now let's go to this point. This point is really interesting. Here, we see that our velocity—the slope of the tangent line—is still negative, so our velocity is still decreasing. But what about the absolute value of our velocity, which is speed? Well, if you think about it, a moment before this, we were slowing down to get to a zero velocity, and a moment after this, we're going to be speeding up to start having negative velocity.

You might say, "Wait, speeding up for negative velocity?" Remember, speed is the absolute value. So if your velocity goes from zero to negative one meters per second, your speed just went from zero to one meter per second. Therefore, we're slowing down here, and we're speeding up here, but right at this moment, neither is happening. We are neither speeding up nor slowing down.

Now, what about this point here? The slope of our velocity-time graph, or the slope of the tangent line, is still negative. So our velocity is still decreasing. But what about speed? Well, our velocity has already become negative, and it's becoming more negative, so the absolute value of velocity, which is 2 meters per second, is increasing at that moment in time. So our speed is actually increasing.

So notice here, you see a difference.

Now, what about this point? Well, the slope of the tangent line here of our velocity-time graph is zero right at that point. So that means that our velocity is not changing. You could say velocity is not changing, and if speed is the absolute value or the magnitude of velocity, well, that will also be not changing. So we would say speed is neither slowing down nor speeding up.

Last but not least, this point right over here—the slope of the tangent line is positive, so our velocity is increasing. What about speed? Well, the speed here is two meters per second; remember, it would be the absolute value of the velocity.

Here, the absolute value is actually going down if we forward in time a little bit. So our speed is actually decreasing; we are slowing down as our velocity gets closer and closer to zero because the absolute value is getting closer and closer to zero.

More Articles

View All
The Articles of Confederation | Period 3: 1754-1800 | AP US History | Khan Academy
Hey, this is Kim, and I’m here with Leah, KH Academy’s US government and politics fellow. Welcome, Leah! How’s it going? All right, so we’re talking about the Articles of Confederation, which I think many people don’t realize was the first Constitution o…
Ryan Hoover on Product Hunt's Acquisition and Lessons Learned About Launches with Dalton Caldwell
Welcome to the podcast, guys! It’s going to do well. Are you good? Good. Alright, Ryan. So, for those of our listeners who don’t know who you are, what do you work on? So, I started a company five years ago, almost—actually, just over five years ago—call…
Radians as ratio of arc length to radius | Circles | High school geometry | Khan Academy
What we’re going to do in this video is think about a way to measure angles. There’s several ways to do this. You might have seen this leveraging things like degrees in other videos, but now we’re going to introduce a new concept, or maybe you know this c…
Subject and object pronouns | The parts of speech | Grammar | Khan Academy
All right, so grammarians, I want to talk to you about the difference between subject and object pronouns. But before we do that, let’s start off with a little primer on what subjects and objects actually are—um, just generally, for our grammatical purpos…
15 Things You Should Know About Your Haters
Fifteen things you should know about your haters. Welcome to A Lux, the place where future billionaires come to get inspired. Hey there, A Luxers! So, we have a juicy video for you today. As you know, success and haters go hand-in-hand. In fact, a good i…
9 CRUCIAL MOMENTS TO ADOPT SILENCE LOCK YOUR MOUTH | STOICISM INSIGHTS
Imagine a world where your silence can speak louder than words, where your calm can overpower the chaos around you. Today we’re diving deep into the art of silence, a concept so powerful yet so underrated in our noisy, hectic world. I want you to think ab…