yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing exponential functions | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're told to use the interactive graph below to sketch a graph of ( y = -2 \cdot 3^x + 5 ).

And so this is clearly an exponential function right over here. Let's think about the behavior as ( x ) changes. When ( x ) is very negative or when ( x ) is very positive. When ( x ) is very negative, ( 3 ) to a very negative number—like you said, let's say you had ( 3^{-3} )—that would be ( \frac{1}{27} ), or ( 3^{-4} )—that'd be ( \frac{1}{81} ). So this is going to get smaller and smaller and smaller. It's going to approach ( 0 ) as ( x ) becomes more negative.

And since this is approaching ( 0 ), this whole thing right over here is going to approach ( 0 ). So this whole expression, if this first part's approaching ( 0 ), then this whole expression is going to approach ( 5 ). We're going to have a horizontal asymptote that we're going to approach as we go to the left. As ( x ) gets more and more negative, we're going to approach positive ( 5 ).

Then, as ( x ) gets larger and larger and larger, ( 3^x ) is growing exponentially. But then we're multiplying it times ( -2 ), so it's going to become more and more and more negative, and then we add a ( 5 ).

What we have here, well, this doesn't look like a line; we want to graph an exponential. So let's go pick the exponential in terms of ( x ). There you have it! We can move three things: we can move this point; it doesn't even just have to be the ( y )-intercept, although that's a convenient thing to figure out.

We can move this point here, and we can move the asymptote. Maybe the asymptote's the first interesting thing we said: as ( x ) becomes more and more and more and more negative, ( y ) is going to approach ( 5 ). So let me put this up here; that's our asymptote.

It doesn't look like it quite yet, but when we try out some values for ( x ) and the corresponding ( y ) values and we move these points accordingly, hopefully our exponential is going to look right.

So let's think about—let's pick some convenient ( x ) values. Let's think about when ( x = 0 ). If ( x = 0 ), ( 3^0 = 1 ); ( -2 \cdot 1 = -2); and ( -2 + 5 = 3 ). So when ( x = 0 ), ( y = 3 ).

Now, let's think about when ( x = 1 ). I’m just picking that because it's easy to compute: ( 3^1 = 3 ); ( -2 \cdot 3 = -6); and ( -6 + 5 = -1 ). So when ( x = 1 ), ( y = -1 ).

Let's see, is this consistent with what we just described? When ( x ) is very negative, we should be approaching positive ( 5 ), and that looks like the case. As we move to the left, we're getting closer and closer and closer to ( 5 ).

In fact, it looks like they overlap, but really we're just getting closer and closer and closer because this term right over here is getting smaller and smaller and smaller as ( x ) becomes more and more and more negative.

But then, as ( x ) becomes more and more positive, this term becomes really negative because we're multiplying it times ( -2 ), and we see that it becomes really negative.

So I feel pretty good about what we've just graphed. We've graphed the horizontal asymptote, it makes sense, and we've picked two points that sit on this graph of this exponential. So I can check my answer, and we got it right!

More Articles

View All
Comparing rates example
We’re told that a conservationist has the hypothesis that when squirrels are more crowded together, they have higher rates of aggression. The table below shows the area of three parks and the number of squirrels in each; that’s given right over here. Orde…
3d curl formula, part 2
So I’m explaining the formula for three-dimensional curl, and where we left off, we have this determinant of a 3x3 matrix, which looks absurd because none of the individual components are actual numbers. But nevertheless, I’m about to show how, when you k…
Identifying graph for exponential
All right, we are asked to choose the graph of the function, and the function is f of x equal to 2 * 3^x. We have three choices here, so pause this video and see if you can determine which of these three graphs actually is the graph of f of x. All right,…
Behind the Scenes with Geoffrey Rush | Genius
[music playing] Hello, my name is Geoffrey Rush and I play Albert Einstein the older. I was four when Albert Einstein died. So everything I know about him is more from the legend that he became because he was almost like a cult figure in a way. Einstein …
See What Happens When You Tickle a Rat | National Geographic
Researchers at Humboldt University of Berlin have been trying to find out what happens in the brain when we’re tickled. In 1999, scientists found young rats also vocalize when they’re tickled. Are they actually laughing? What does a rat’s voice sound like…
The Real Meaning of Life
Life is hard. I bought a new pair of shoes the other day, walked outside into the rain, and ended up stepping into some mud. Now they’re ruined, and I’m bitter. But then I took a step back—not literally, of course—but I really thought about it, and I came…