yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing exponential functions | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're told to use the interactive graph below to sketch a graph of ( y = -2 \cdot 3^x + 5 ).

And so this is clearly an exponential function right over here. Let's think about the behavior as ( x ) changes. When ( x ) is very negative or when ( x ) is very positive. When ( x ) is very negative, ( 3 ) to a very negative number—like you said, let's say you had ( 3^{-3} )—that would be ( \frac{1}{27} ), or ( 3^{-4} )—that'd be ( \frac{1}{81} ). So this is going to get smaller and smaller and smaller. It's going to approach ( 0 ) as ( x ) becomes more negative.

And since this is approaching ( 0 ), this whole thing right over here is going to approach ( 0 ). So this whole expression, if this first part's approaching ( 0 ), then this whole expression is going to approach ( 5 ). We're going to have a horizontal asymptote that we're going to approach as we go to the left. As ( x ) gets more and more negative, we're going to approach positive ( 5 ).

Then, as ( x ) gets larger and larger and larger, ( 3^x ) is growing exponentially. But then we're multiplying it times ( -2 ), so it's going to become more and more and more negative, and then we add a ( 5 ).

What we have here, well, this doesn't look like a line; we want to graph an exponential. So let's go pick the exponential in terms of ( x ). There you have it! We can move three things: we can move this point; it doesn't even just have to be the ( y )-intercept, although that's a convenient thing to figure out.

We can move this point here, and we can move the asymptote. Maybe the asymptote's the first interesting thing we said: as ( x ) becomes more and more and more and more negative, ( y ) is going to approach ( 5 ). So let me put this up here; that's our asymptote.

It doesn't look like it quite yet, but when we try out some values for ( x ) and the corresponding ( y ) values and we move these points accordingly, hopefully our exponential is going to look right.

So let's think about—let's pick some convenient ( x ) values. Let's think about when ( x = 0 ). If ( x = 0 ), ( 3^0 = 1 ); ( -2 \cdot 1 = -2); and ( -2 + 5 = 3 ). So when ( x = 0 ), ( y = 3 ).

Now, let's think about when ( x = 1 ). I’m just picking that because it's easy to compute: ( 3^1 = 3 ); ( -2 \cdot 3 = -6); and ( -6 + 5 = -1 ). So when ( x = 1 ), ( y = -1 ).

Let's see, is this consistent with what we just described? When ( x ) is very negative, we should be approaching positive ( 5 ), and that looks like the case. As we move to the left, we're getting closer and closer and closer to ( 5 ).

In fact, it looks like they overlap, but really we're just getting closer and closer and closer because this term right over here is getting smaller and smaller and smaller as ( x ) becomes more and more and more negative.

But then, as ( x ) becomes more and more positive, this term becomes really negative because we're multiplying it times ( -2 ), and we see that it becomes really negative.

So I feel pretty good about what we've just graphed. We've graphed the horizontal asymptote, it makes sense, and we've picked two points that sit on this graph of this exponential. So I can check my answer, and we got it right!

More Articles

View All
1999 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Good morning! Really delighted we can have this many people come out for a meeting. It says something, I think, about the way you regard yourself as owners. We’re going to hustle through the business meeting and then Charlie and I will be here …
Anti-Gravity Wheel Explained
Standing on the scale. The wheel is spinning and it still weighs 92 kilograms. You made the prediction. Let’s see what happens when I throw it up over my head in three, two, one. What do you think? I don’t know about you, but to me, it looked like a shaky…
Sal discusses the Breakthrough Junior Challenge
Hi, this is Sal Khan of the Khan Academy, and I just wanted to let all of you know about a really exciting challenge that’s going on. It applies to any student that is between the ages of 13 and 18 years old, anywhere in the world. So if you’re one of the…
Legendary Ships 100 Years Apart | National Geographic Documentary Films
This ship sank more than 100 years ago, and this is how its modern equivalent found the wreck. I’m historian Dan Snow, and I was privileged to be on board Aulus 2 on our mission to find Endurance’s wreck. Endurance was just 144 ft long; Aulus is three ti…
Two Friends + 24 Hours = One Great Adventure in Croatia | Short Film Showcase
This is my friend Alistair Humphries. He’s an adventurer and writer, and in the summer, he invited me on a micro-adventure in Croatia. The idea was to fit in as much as we possibly could in 24 hours and to make a short film about it. So first, we made a …
Can We Really Touch Anything?
[Applause] Can we, can we really touch something? So, I can touch the camera. The question of, can we really touch something, is a great one. Well, let’s say we have two electrons. I imagine what we mean by touching is that they come in and they actually…