yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing exponential functions | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're told to use the interactive graph below to sketch a graph of ( y = -2 \cdot 3^x + 5 ).

And so this is clearly an exponential function right over here. Let's think about the behavior as ( x ) changes. When ( x ) is very negative or when ( x ) is very positive. When ( x ) is very negative, ( 3 ) to a very negative number—like you said, let's say you had ( 3^{-3} )—that would be ( \frac{1}{27} ), or ( 3^{-4} )—that'd be ( \frac{1}{81} ). So this is going to get smaller and smaller and smaller. It's going to approach ( 0 ) as ( x ) becomes more negative.

And since this is approaching ( 0 ), this whole thing right over here is going to approach ( 0 ). So this whole expression, if this first part's approaching ( 0 ), then this whole expression is going to approach ( 5 ). We're going to have a horizontal asymptote that we're going to approach as we go to the left. As ( x ) gets more and more negative, we're going to approach positive ( 5 ).

Then, as ( x ) gets larger and larger and larger, ( 3^x ) is growing exponentially. But then we're multiplying it times ( -2 ), so it's going to become more and more and more negative, and then we add a ( 5 ).

What we have here, well, this doesn't look like a line; we want to graph an exponential. So let's go pick the exponential in terms of ( x ). There you have it! We can move three things: we can move this point; it doesn't even just have to be the ( y )-intercept, although that's a convenient thing to figure out.

We can move this point here, and we can move the asymptote. Maybe the asymptote's the first interesting thing we said: as ( x ) becomes more and more and more and more negative, ( y ) is going to approach ( 5 ). So let me put this up here; that's our asymptote.

It doesn't look like it quite yet, but when we try out some values for ( x ) and the corresponding ( y ) values and we move these points accordingly, hopefully our exponential is going to look right.

So let's think about—let's pick some convenient ( x ) values. Let's think about when ( x = 0 ). If ( x = 0 ), ( 3^0 = 1 ); ( -2 \cdot 1 = -2); and ( -2 + 5 = 3 ). So when ( x = 0 ), ( y = 3 ).

Now, let's think about when ( x = 1 ). I’m just picking that because it's easy to compute: ( 3^1 = 3 ); ( -2 \cdot 3 = -6); and ( -6 + 5 = -1 ). So when ( x = 1 ), ( y = -1 ).

Let's see, is this consistent with what we just described? When ( x ) is very negative, we should be approaching positive ( 5 ), and that looks like the case. As we move to the left, we're getting closer and closer and closer to ( 5 ).

In fact, it looks like they overlap, but really we're just getting closer and closer and closer because this term right over here is getting smaller and smaller and smaller as ( x ) becomes more and more and more negative.

But then, as ( x ) becomes more and more positive, this term becomes really negative because we're multiplying it times ( -2 ), and we see that it becomes really negative.

So I feel pretty good about what we've just graphed. We've graphed the horizontal asymptote, it makes sense, and we've picked two points that sit on this graph of this exponential. So I can check my answer, and we got it right!

More Articles

View All
Bill Ackman: How to Get RICH During Inflation (RARE New Interview)
Again, my view is inflation, or kind of the house view, is inflation is going to be persistently higher. That can happen in the very short term, like literally weeks. I think the structural forces have changed. Billionaire investor Bill Amman just issued …
Subtracting two-digit numbers without regrouping (example 2) | 2nd grade | Khan Academy
I would like you to pause the video and think about what 64 minus 31 is. Alright, now let’s think about this together. So what does 64 actually mean? Well, we can use place value to think about that. The six is in the tens place and the four is in the o…
My Money Goals by Age 30
Hey guys, welcome back to the channel! In this video, I’m going to be talking about my personal financial goals that I’m trying to achieve before I’m 30. It’s kind of funny: I’ve never really spoken about this in depth on the channel before what I’m actua…
Warren Buffett's BIG $9,000,000,000 Investment
There’s no secret that over the past few years, Warren Buffett has been struggling to deploy Berkshire Hathaway’s monster cash pile. He hasn’t been able to find any really big investments to sink that money into. This was a focus in his 2019 shareholder l…
Wolves in Yellowstone, LIVE! | Yellowstone Live
How’re you guys doing? We’re live in West Yellowstone ahead of Yellowstone Live tonight at 9:00, 8:00 Central on National Geographic and Nat Geo Wild with Trent, a naturalist at the Grizzly Wolf Discovery Center. Thank you so much for being here. Q: Tell…
The Unintended Consequences of Playing God
Imagine you’re going blind. The world slowly becomes a blur. You can no longer see your family or your friends. You can’t see the beauty of a mountain landscape or the ripples in the ocean. Then a YouTuber comes around, offering to give you the gift of si…