yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing exponential functions | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

We're told to use the interactive graph below to sketch a graph of ( y = -2 \cdot 3^x + 5 ).

And so this is clearly an exponential function right over here. Let's think about the behavior as ( x ) changes. When ( x ) is very negative or when ( x ) is very positive. When ( x ) is very negative, ( 3 ) to a very negative number—like you said, let's say you had ( 3^{-3} )—that would be ( \frac{1}{27} ), or ( 3^{-4} )—that'd be ( \frac{1}{81} ). So this is going to get smaller and smaller and smaller. It's going to approach ( 0 ) as ( x ) becomes more negative.

And since this is approaching ( 0 ), this whole thing right over here is going to approach ( 0 ). So this whole expression, if this first part's approaching ( 0 ), then this whole expression is going to approach ( 5 ). We're going to have a horizontal asymptote that we're going to approach as we go to the left. As ( x ) gets more and more negative, we're going to approach positive ( 5 ).

Then, as ( x ) gets larger and larger and larger, ( 3^x ) is growing exponentially. But then we're multiplying it times ( -2 ), so it's going to become more and more and more negative, and then we add a ( 5 ).

What we have here, well, this doesn't look like a line; we want to graph an exponential. So let's go pick the exponential in terms of ( x ). There you have it! We can move three things: we can move this point; it doesn't even just have to be the ( y )-intercept, although that's a convenient thing to figure out.

We can move this point here, and we can move the asymptote. Maybe the asymptote's the first interesting thing we said: as ( x ) becomes more and more and more and more negative, ( y ) is going to approach ( 5 ). So let me put this up here; that's our asymptote.

It doesn't look like it quite yet, but when we try out some values for ( x ) and the corresponding ( y ) values and we move these points accordingly, hopefully our exponential is going to look right.

So let's think about—let's pick some convenient ( x ) values. Let's think about when ( x = 0 ). If ( x = 0 ), ( 3^0 = 1 ); ( -2 \cdot 1 = -2); and ( -2 + 5 = 3 ). So when ( x = 0 ), ( y = 3 ).

Now, let's think about when ( x = 1 ). I’m just picking that because it's easy to compute: ( 3^1 = 3 ); ( -2 \cdot 3 = -6); and ( -6 + 5 = -1 ). So when ( x = 1 ), ( y = -1 ).

Let's see, is this consistent with what we just described? When ( x ) is very negative, we should be approaching positive ( 5 ), and that looks like the case. As we move to the left, we're getting closer and closer and closer to ( 5 ).

In fact, it looks like they overlap, but really we're just getting closer and closer and closer because this term right over here is getting smaller and smaller and smaller as ( x ) becomes more and more and more negative.

But then, as ( x ) becomes more and more positive, this term becomes really negative because we're multiplying it times ( -2 ), and we see that it becomes really negative.

So I feel pretty good about what we've just graphed. We've graphed the horizontal asymptote, it makes sense, and we've picked two points that sit on this graph of this exponential. So I can check my answer, and we got it right!

More Articles

View All
Worked example: exponential solution to differential equation | AP Calculus AB | Khan Academy
So we’ve got the differential equation: the derivative of y with respect to x is equal to 3 times y, and we want to find the particular solution that gives us y being equal to 2 when x is equal to 1. So I encourage you to pause this video and see if you …
15 Philosophies That Will Change Your Life
A single sentence could change your life. These philosophies are meant to shake you out of complacency. They’re meant to bring you back down to earth to make you aware of your presence in the world. When it hits home, it’ll give you the inspiration to get…
Place value with decimals
What we’re going to do in this video is refresh our understanding of place value, but we’re going to dig a little bit deeper and think about place value in the context of decimals. So just as a refresher, if I had the number 973, this should be review fo…
Jeff Clavier and Andrea Zurek - Startup Investor School Day 3
Jeff is someone that I met in the very beginning of my venture into venture. When I first started investing a long time ago, he taught me as many lessons about how to be a good investor. In two senses, how to be a good investor by making good choices and …
URGENT: Federal Reserve Announces MASSIVE Rate Cut, Bailout Begins!
What’s up you guys? It’s Graham here, and I hope you’re prepared for what just happened. As of a few hours ago, for the first time since March of 2020, the Federal Reserve has finally made the decision to lower interest rates after one of the most aggress…
Michael Burry's HUGE New Bet on ONE STOCK
[Music] Hey guys, welcome back to the channel! In this video, we are going to be looking at another famous investor’s Q2 2020 13F filing. Of course, the 13Fs have just been dominating the news over the past couple of weeks; they’ve all come out at once. S…