yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphs of rational functions: horizontal asymptote | Algebra II | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let f of x equal negative x squared plus a x plus b over x squared plus c x plus d, where a, b, c, and d are unknown constants. Which of the following is a possible graph of y is equal to f of x? They tell us dashed lines indicate asymptotes.

So, this is really interesting here, and they give us four choices. We see four of them—three of them right now. Then, if I scroll a little bit over, you can see choice d. I encourage you to pause the video and think about how we can figure it out. Because it is interesting, they haven't given us a lot of details. They haven't given us what these coefficients or these constants are going to be.

All right, now let's think about it. One thing we could think about is horizontal asymptotes. So, let's consider what happens as x approaches positive or negative infinity. Well, as x approaches infinity or x approaches negative infinity, f of x will be approximately equal to…

Well, we're going to look at the highest degree terms because these are going to dominate as the magnitude of x, or the absolute value of x, becomes very large. So, f of x is going to be approximately negative x squared over x squared, which is equal to negative one.

Thus, f(x) is going to approach negative one in either direction— as x approaches infinity or x approaches negative infinity. So, we have a horizontal asymptote at y equals negative one.

Now, let's see choice a here. It does look like they have a horizontal asymptote at y equals negative one right over there, and we can verify that because each hash mark is two. We go from two to zero to negative two to negative four, so this does look like it's at negative one.

So, based only on the horizontal asymptote, choice a looks good. Choice b has a horizontal asymptote at y equals positive two, so we can rule that out. We know that our horizontal asymptote as x approaches positive or negative infinity is at y equals negative one.

Here, our horizontal asymptote is at y equals zero. The graph approaches the x-axis from either above or below, so it's not the case that the horizontal asymptote is y equals negative one. We can rule that one out.

Similarly, over here, our horizontal asymptote is not y equals negative one; a horizontal asymptote is y equals zero. So, we can rule that one out as well.

That makes sense because, really, they only gave us enough information to figure out the horizontal asymptote. They didn't give us enough information to determine how many roots or what happens in the interval and all of those types of things—how many zeros and all that, because we don't know what the actual coefficients or constants of the quadratic are.

All we know is what happens as the x squared terms dominate. This function is going to approach negative one, and so we pick choice a.

More Articles

View All
Steve Varsano talks about his experience in aviation
When you’re selling a jet for a company, that company is either moving up to a bigger, newer jet, or the company’s having problems and they’re selling the jet and they’re getting out of the business of operating their own corporate jet. If it’s the latte…
Robinhood Just Got Cancelled - Again
What’s up you guys, it’s Graham here. So historically, they say that on average September is the worst month for the stock market, dating all the way back to 1950. Now whether or not that comes true for this month is yet to be seen, but I have to say the…
Watch UK's Natural Land Diminish in 100 Seconds | Short Film Showcase
What does the United Kingdom really look like? To get a better sense of proportion, let’s go on a hundred second walk across our nation. Each second of the walk reveals one percent of our lands and how they look from above. Are you ready for the UK in 100…
Computing the partial derivative of a vector-valued function
Hello everyone. It’s what I’d like to do here, and in the following few videos, is talk about how you take the partial derivative of vector-valued functions. So the kind of thing I have in mind there will be a function with a multiple variable input. So …
How this 96-year-old Secretary grew a $9,000,000 Fortune
What’s up you guys? It’s Graham here. So, I want to share a really cool story written by Corey Kildonan of the New York Times. It’s a great example of what can happen when you live frugally and invest consistently while still working a very modest nine-to…
THE END of Credit Card Signup Bonuses??
Lots of you guys, it’s Graham here. So, you know, unfortunately, I have a little bit of bad news today. You know when you find a way to outsmart and exploit the system for a profit? Eventually, the credit card companies are gonna start to catch on to this…