yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphs of rational functions: horizontal asymptote | Algebra II | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let f of x equal negative x squared plus a x plus b over x squared plus c x plus d, where a, b, c, and d are unknown constants. Which of the following is a possible graph of y is equal to f of x? They tell us dashed lines indicate asymptotes.

So, this is really interesting here, and they give us four choices. We see four of them—three of them right now. Then, if I scroll a little bit over, you can see choice d. I encourage you to pause the video and think about how we can figure it out. Because it is interesting, they haven't given us a lot of details. They haven't given us what these coefficients or these constants are going to be.

All right, now let's think about it. One thing we could think about is horizontal asymptotes. So, let's consider what happens as x approaches positive or negative infinity. Well, as x approaches infinity or x approaches negative infinity, f of x will be approximately equal to…

Well, we're going to look at the highest degree terms because these are going to dominate as the magnitude of x, or the absolute value of x, becomes very large. So, f of x is going to be approximately negative x squared over x squared, which is equal to negative one.

Thus, f(x) is going to approach negative one in either direction— as x approaches infinity or x approaches negative infinity. So, we have a horizontal asymptote at y equals negative one.

Now, let's see choice a here. It does look like they have a horizontal asymptote at y equals negative one right over there, and we can verify that because each hash mark is two. We go from two to zero to negative two to negative four, so this does look like it's at negative one.

So, based only on the horizontal asymptote, choice a looks good. Choice b has a horizontal asymptote at y equals positive two, so we can rule that out. We know that our horizontal asymptote as x approaches positive or negative infinity is at y equals negative one.

Here, our horizontal asymptote is at y equals zero. The graph approaches the x-axis from either above or below, so it's not the case that the horizontal asymptote is y equals negative one. We can rule that one out.

Similarly, over here, our horizontal asymptote is not y equals negative one; a horizontal asymptote is y equals zero. So, we can rule that one out as well.

That makes sense because, really, they only gave us enough information to figure out the horizontal asymptote. They didn't give us enough information to determine how many roots or what happens in the interval and all of those types of things—how many zeros and all that, because we don't know what the actual coefficients or constants of the quadratic are.

All we know is what happens as the x squared terms dominate. This function is going to approach negative one, and so we pick choice a.

More Articles

View All
Correcting a Dachshund's Bad Habit | Cesar Millan: Better Human Better Dog
All right, so this is the final challenge. It’s a sick sack of obstacles. Caesar works with Millie, a seven-month-old dachshund, whose habit of eating trash off the ground could have lethal consequences. This is serious; this dog can actually get hurt. Ca…
General multiplication rule example: dependent events | Probability & combinatorics
We’re told that Maya and Doug are finalists in a crafting competition. For the final round, each of them will randomly select a card without replacement that will reveal what the star material must be in their craft. Here are the available cards. I guess …
Follow Mexico's 'Bat Man' on a Search for Vampire Bats | Short Film Showcase
[Music] To an untrained eye, you see a rainforest, but someone who has a little bit of information of what was going on there can see the effects of humans all over the place. [Music] The Maya lived here for over 1,500 years, sustaining densities that wer…
Gordon Ramsay's Best Moments | Uncharted Season 4 | National Geographic
Three, two, one, go! I feel like I’m moving a body. How do we know? I tested one; this C—this is so weird. G reckons he can open oysters, but I say you’re better at the shocking. I know about that! You want a Shu off? We have off. Oh, for Shu’s sake! 12 e…
Chase Adam at Startup School NY 2014
Chase Adams, the founder of Watsi. Watsi is the crowdfunding platform for healthcare that lets anyone donate as little as $5 to fund medical care for people in need. So before starting Watsi, Chase traveled, worked, and studied in more than 20 countries. …
Darren's Great Big Camera - Smarter Every Day 21
Today on Smarter Every Day, you’re gonna learn about big rockets and big cameras. Is it going now? Woah! [Rushing air] Woohoo! Yeah! Oh! Hey, it’s me, Destin. I’m at the U.S. Space & Rocket Center with my new friend Darren, who’s got a great big camer…