yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphs of rational functions: horizontal asymptote | Algebra II | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let f of x equal negative x squared plus a x plus b over x squared plus c x plus d, where a, b, c, and d are unknown constants. Which of the following is a possible graph of y is equal to f of x? They tell us dashed lines indicate asymptotes.

So, this is really interesting here, and they give us four choices. We see four of them—three of them right now. Then, if I scroll a little bit over, you can see choice d. I encourage you to pause the video and think about how we can figure it out. Because it is interesting, they haven't given us a lot of details. They haven't given us what these coefficients or these constants are going to be.

All right, now let's think about it. One thing we could think about is horizontal asymptotes. So, let's consider what happens as x approaches positive or negative infinity. Well, as x approaches infinity or x approaches negative infinity, f of x will be approximately equal to…

Well, we're going to look at the highest degree terms because these are going to dominate as the magnitude of x, or the absolute value of x, becomes very large. So, f of x is going to be approximately negative x squared over x squared, which is equal to negative one.

Thus, f(x) is going to approach negative one in either direction— as x approaches infinity or x approaches negative infinity. So, we have a horizontal asymptote at y equals negative one.

Now, let's see choice a here. It does look like they have a horizontal asymptote at y equals negative one right over there, and we can verify that because each hash mark is two. We go from two to zero to negative two to negative four, so this does look like it's at negative one.

So, based only on the horizontal asymptote, choice a looks good. Choice b has a horizontal asymptote at y equals positive two, so we can rule that out. We know that our horizontal asymptote as x approaches positive or negative infinity is at y equals negative one.

Here, our horizontal asymptote is at y equals zero. The graph approaches the x-axis from either above or below, so it's not the case that the horizontal asymptote is y equals negative one. We can rule that one out.

Similarly, over here, our horizontal asymptote is not y equals negative one; a horizontal asymptote is y equals zero. So, we can rule that one out as well.

That makes sense because, really, they only gave us enough information to figure out the horizontal asymptote. They didn't give us enough information to determine how many roots or what happens in the interval and all of those types of things—how many zeros and all that, because we don't know what the actual coefficients or constants of the quadratic are.

All we know is what happens as the x squared terms dominate. This function is going to approach negative one, and so we pick choice a.

More Articles

View All
15 Ways To MAKE PEOPLE TRUST YOU
Hey there. We know how you feel. You have good intentions, but you can’t seem to get anyone to trust you. And worse, you have no idea why anyone would trust you. In fact, this has caused you to trust yourself even less. But did you know that all of that c…
Homeroom with Sal & María Elena Salinas - Thursday, August 13
Hello, Sal here from Khan Academy. Welcome to our homeroom live stream! We have a very exciting guest today. Uh, but before we jump into that conversation, I will give my standard reminders to folks. One, uh, just a reminder that we are a not-for-profit …
The Man Behind the Bucket: Making Self-Portraits From Trash | Short Film Showcase
I don’t go somewhere to search because if you search things you don’t find them. So I go mostly and then I get surprised by what I find there. I have things in my mind, but I never would say I need this certain kind of chair or that kind of chair or somet…
2012 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Good morning! I’m More and then this hyperkinetic fellow is Charlie. We’re going to, uh, conduct this pretty much as we have in the past. We’ll take your questions, alternating among the media and analysts in the audience until 3:30, with a br…
Nietzsche - Follow No One, Trust Yourself
In Thus Spoke Zarathustra, in the chapter called The Bestowing Virtue, Friedrich Nietzsche wrote something surprising. Zarathustra—a sage who is also the central character of the book—tells his followers to stop following him. He says, “I now go alone, my…
Multiplying rational expressions | Precalculus | Khan Academy
So what I have here is an expression where I’m multiplying rational expressions, and we want to do this multiplication and then reduce to the lowest term. So if you feel so inspired, I encourage you to pause this video and see if you can have a go at that…