yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving proportions 2 exercise examples | Algebra Basics | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] We have the proportion ( x - 9 ) over ( 12 ) is equal to ( \frac{2}{3} ), and we wanna solve for the ( x ) that satisfies this proportion. Now, there's a bunch of ways that you could do it. A lot of people, as soon as they see a proportion like this, they wanna cross-multiply. They wanna say, "Hey, three times ( x - 9 ) is going to be equal to two times ( 12 )." And that's completely legitimate. You would get, let me write that down.

So three times ( x - 9 ), three times ( x - 9 ) is equal to two times ( 12 ). So it would be equal to two times ( 12 ). And then you can distribute the three. You'd get ( 3x - 27 ) is equal to ( 24 ). And then you could add ( 27 ) to both sides, and you would get, let me actually do that. So let me add ( 27 ) to both sides, and we are left with ( 3x ) is equal to, is equal to, let's see, ( 51 ). And then ( x ) would be equal to ( 17 ). ( x ) would be equal to ( 17 ). And you can verify that this works. ( 17 - 9 ) is ( 8 ). ( \frac{8}{12} ) is the same thing as ( \frac{2}{3} ). So this checks out.

Another way you could do that, instead of just straight up doing the cross-multiplication, you could say, "Look, I wanna get rid of this ( 12 ) in the denominator right over here. Let's multiply both sides by ( 12 )." So if you multiply both sides by ( 12 ), on your left-hand side, you are just left with ( x - 9 ). And on your right-hand side, ( \frac{2}{3} ) times ( 12 ), well, ( \frac{2}{3} ) of ( 12 ) is just ( 8 ). And you could do the actual multiplication, ( \frac{2}{3} ) times ( \frac{12}{1} ). ( 12, 12 ) and ( 3 ), so ( 12 ) divided by ( 3 ) is ( 4 ). ( 3 ) divided by ( 3 ) is ( 1 ). So it becomes ( \frac{2 \cdot 4}{1} ), which is just ( 8 ).

And then you add ( 9 ) to both sides. So the fun of algebra is that as long as you do something that's logically consistent, you will get the right answer. There's no one way of doing it. So here you get ( x ) is equal to ( 17 ) again. And you can also, you can multiply both sides by ( 12 ) and both sides by ( 3 ), and then that would be functionally equivalent to cross-multiplying.

Let's do one more. So here, another proportion, and this time the ( x ) is in the denominator. But just like before, if we want, we can cross-multiply. And just to see where cross-multiplying comes from, that it's not some voodoo, that you still are doing logical algebra, that you're doing the same thing to both sides of the equation, you just need to appreciate that we're just multiplying both sides by both denominators.

So we have this ( 8 ) right over here on the left-hand side. If we wanna get rid of this ( 8 ) on the left-hand side in the denominator, we can multiply the left-hand side by ( 8 ). But in order for the equality to hold true, I can't do something to just one side. I have to do it to both sides. Similarly, similarly, if (laughs) I, if I wanna get this ( x + 1 ) out of the denominator, I could multiply by ( x + 1 ) right over here. But I have to do that on both sides if I want my equality to hold true.

And notice, when you do what we just did, this is going to be equivalent to cross-multiplying. Because these ( 8s ) cancel out, and this ( x + 1 ) cancels with that ( x + 1 ) right over there. And you are left with, you are left with ( (x + 1) ) times ( 7 ), and I could write it as ( 7(x + 1) ), is equal to ( 5 \times 8 ), is equal to ( 5 \times 8 ). Notice, this is exactly what you have done if you would've cross-multiplied. Cross-multiplication is just a shortcut of multiplying both sides by both the denominators.

We have ( 7(x + 1) ) is equal to ( 5 \times 8 ). And now we can go and solve the algebra. So distributing the ( 7 ), we get ( 7x + 7 ) is equal to ( 40 ). And then subtracting ( 7 ) from both sides, so let's subtract ( 7 ) from both sides, we are left with ( 7x ) is equal to ( 33 ). Dividing both sides by ( 7 ), we are left with ( x ) is equal to ( \frac{33}{7} ). And if we wanna write that as a mixed number, this is the same thing, let's see, this is the same thing as ( 4 \frac{5}{7} ), and we're done.

More Articles

View All
Hypothesis test for difference in proportions example | AP Statistics | Khan Academy
We are told that researchers suspect that myopia, or nearsightedness, is becoming more common over time. A study from the year 2000 showed 132 cases of myopia in 400 randomly selected people. A separate study from 2015 showed 228 cases in 600 randomly sel…
Battling the Current | Primal Survivor
Finally, I know I’m approaching the waterfalls because the rush of water is becoming deafening. Here they are, amazing! Standing this close to such thundering power is breathtaking. When the fish migrate up the river to spawn, many gather near the base of…
How a Shark's Vision Works | When Sharks Attack
Elvin is part of a series of events puzzling investigators: nine shark attacks along the southeast Florida coast in 2017, more than double the average. With leads coming up short, some local authorities come up with their own theories for the spike. Vero …
My Life Advice for Teenagers
At this part in your life, you physically and mentally change so that you become an independent adult. At least you want to become an independent adult. And so, you have to recognize that, where in the past maybe your relationship with your parents and re…
The Problem With Romanticizing Mental Illness
If you’re watching this right now, chances are you spent many years of your life feeling misunderstood. Maybe you coped by spending hours online or listening to pop punk alone in your bedroom. You might have wished to run away or for a simple answer that …
How Sharks Devoured My Career | Podcast | Overheard at National Geographic
Foreign I gotta say the first experience I had with a great white, or I should say the lead up to the first experience, was filled with terror. That’s National Geographic Explorer, Gibbs Kaguru. Gibbs is a Kenyan scientist who studies sharks, and he’s tal…