yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving proportions 2 exercise examples | Algebra Basics | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] We have the proportion ( x - 9 ) over ( 12 ) is equal to ( \frac{2}{3} ), and we wanna solve for the ( x ) that satisfies this proportion. Now, there's a bunch of ways that you could do it. A lot of people, as soon as they see a proportion like this, they wanna cross-multiply. They wanna say, "Hey, three times ( x - 9 ) is going to be equal to two times ( 12 )." And that's completely legitimate. You would get, let me write that down.

So three times ( x - 9 ), three times ( x - 9 ) is equal to two times ( 12 ). So it would be equal to two times ( 12 ). And then you can distribute the three. You'd get ( 3x - 27 ) is equal to ( 24 ). And then you could add ( 27 ) to both sides, and you would get, let me actually do that. So let me add ( 27 ) to both sides, and we are left with ( 3x ) is equal to, is equal to, let's see, ( 51 ). And then ( x ) would be equal to ( 17 ). ( x ) would be equal to ( 17 ). And you can verify that this works. ( 17 - 9 ) is ( 8 ). ( \frac{8}{12} ) is the same thing as ( \frac{2}{3} ). So this checks out.

Another way you could do that, instead of just straight up doing the cross-multiplication, you could say, "Look, I wanna get rid of this ( 12 ) in the denominator right over here. Let's multiply both sides by ( 12 )." So if you multiply both sides by ( 12 ), on your left-hand side, you are just left with ( x - 9 ). And on your right-hand side, ( \frac{2}{3} ) times ( 12 ), well, ( \frac{2}{3} ) of ( 12 ) is just ( 8 ). And you could do the actual multiplication, ( \frac{2}{3} ) times ( \frac{12}{1} ). ( 12, 12 ) and ( 3 ), so ( 12 ) divided by ( 3 ) is ( 4 ). ( 3 ) divided by ( 3 ) is ( 1 ). So it becomes ( \frac{2 \cdot 4}{1} ), which is just ( 8 ).

And then you add ( 9 ) to both sides. So the fun of algebra is that as long as you do something that's logically consistent, you will get the right answer. There's no one way of doing it. So here you get ( x ) is equal to ( 17 ) again. And you can also, you can multiply both sides by ( 12 ) and both sides by ( 3 ), and then that would be functionally equivalent to cross-multiplying.

Let's do one more. So here, another proportion, and this time the ( x ) is in the denominator. But just like before, if we want, we can cross-multiply. And just to see where cross-multiplying comes from, that it's not some voodoo, that you still are doing logical algebra, that you're doing the same thing to both sides of the equation, you just need to appreciate that we're just multiplying both sides by both denominators.

So we have this ( 8 ) right over here on the left-hand side. If we wanna get rid of this ( 8 ) on the left-hand side in the denominator, we can multiply the left-hand side by ( 8 ). But in order for the equality to hold true, I can't do something to just one side. I have to do it to both sides. Similarly, similarly, if (laughs) I, if I wanna get this ( x + 1 ) out of the denominator, I could multiply by ( x + 1 ) right over here. But I have to do that on both sides if I want my equality to hold true.

And notice, when you do what we just did, this is going to be equivalent to cross-multiplying. Because these ( 8s ) cancel out, and this ( x + 1 ) cancels with that ( x + 1 ) right over there. And you are left with, you are left with ( (x + 1) ) times ( 7 ), and I could write it as ( 7(x + 1) ), is equal to ( 5 \times 8 ), is equal to ( 5 \times 8 ). Notice, this is exactly what you have done if you would've cross-multiplied. Cross-multiplication is just a shortcut of multiplying both sides by both the denominators.

We have ( 7(x + 1) ) is equal to ( 5 \times 8 ). And now we can go and solve the algebra. So distributing the ( 7 ), we get ( 7x + 7 ) is equal to ( 40 ). And then subtracting ( 7 ) from both sides, so let's subtract ( 7 ) from both sides, we are left with ( 7x ) is equal to ( 33 ). Dividing both sides by ( 7 ), we are left with ( x ) is equal to ( \frac{33}{7} ). And if we wanna write that as a mixed number, this is the same thing, let's see, this is the same thing as ( 4 \frac{5}{7} ), and we're done.

More Articles

View All
Warren Buffett Buys GOLD?
Well, it’s that time again. The 13Fs are out. Uh, so we as the little investors get to have a look at what the big money managers of the world are buying and selling. And definitely the most watched 13F filing is definitely that of Mr. Warren Buffett. Uh…
Finding equivalent ratios in similar triangles | Grade 8 (TX) | Khan Academy
We’re told Triangle FGH is similar to Triangle KLM. Which proportion could we use to find the length of segment KL? So segment KL is this one right over here, and they put an X there for the length of segment KL. Pause this video and see if you can figure…
15 Things to Avoid If You Want to Grow
Growing and evolving in life is a wonderful journey that we all want to experience, right? It’s a bit like planting a tiny seed and then caring for it so it can grow into a strong, magnificent tree. But as we move forward, there are some catches that we s…
Casey Neistat and Matt Hackett on Live Video's Struggle for Interestingness
I mean, didn’t Google just announce last week some clip-on camera that captures what’s in front of you? In typical Google form, they pitched it though. It’s like this is the center of our AI learning platform about the world, which is the same marketing m…
Simulating samples from populations example 1 | Grade 8 (TX) | Khan Academy
We’re told a company manager wants to estimate the mean amount of time it takes the employees to travel to work. Here’s what the manager did: Survey the first 20 employees to arrive that day. Note the amount of time for each employee, add those times, a…
Aliens Would Visit for Knowledge, Not Resources
I think Stephen Hawking himself said that it was a mistake to broadcast radio waves out into the universe because the aliens are going to be out there, and they’re going to be like conquistadors, and they’re going to want to take over our planet for their…