yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving proportions 2 exercise examples | Algebra Basics | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] We have the proportion ( x - 9 ) over ( 12 ) is equal to ( \frac{2}{3} ), and we wanna solve for the ( x ) that satisfies this proportion. Now, there's a bunch of ways that you could do it. A lot of people, as soon as they see a proportion like this, they wanna cross-multiply. They wanna say, "Hey, three times ( x - 9 ) is going to be equal to two times ( 12 )." And that's completely legitimate. You would get, let me write that down.

So three times ( x - 9 ), three times ( x - 9 ) is equal to two times ( 12 ). So it would be equal to two times ( 12 ). And then you can distribute the three. You'd get ( 3x - 27 ) is equal to ( 24 ). And then you could add ( 27 ) to both sides, and you would get, let me actually do that. So let me add ( 27 ) to both sides, and we are left with ( 3x ) is equal to, is equal to, let's see, ( 51 ). And then ( x ) would be equal to ( 17 ). ( x ) would be equal to ( 17 ). And you can verify that this works. ( 17 - 9 ) is ( 8 ). ( \frac{8}{12} ) is the same thing as ( \frac{2}{3} ). So this checks out.

Another way you could do that, instead of just straight up doing the cross-multiplication, you could say, "Look, I wanna get rid of this ( 12 ) in the denominator right over here. Let's multiply both sides by ( 12 )." So if you multiply both sides by ( 12 ), on your left-hand side, you are just left with ( x - 9 ). And on your right-hand side, ( \frac{2}{3} ) times ( 12 ), well, ( \frac{2}{3} ) of ( 12 ) is just ( 8 ). And you could do the actual multiplication, ( \frac{2}{3} ) times ( \frac{12}{1} ). ( 12, 12 ) and ( 3 ), so ( 12 ) divided by ( 3 ) is ( 4 ). ( 3 ) divided by ( 3 ) is ( 1 ). So it becomes ( \frac{2 \cdot 4}{1} ), which is just ( 8 ).

And then you add ( 9 ) to both sides. So the fun of algebra is that as long as you do something that's logically consistent, you will get the right answer. There's no one way of doing it. So here you get ( x ) is equal to ( 17 ) again. And you can also, you can multiply both sides by ( 12 ) and both sides by ( 3 ), and then that would be functionally equivalent to cross-multiplying.

Let's do one more. So here, another proportion, and this time the ( x ) is in the denominator. But just like before, if we want, we can cross-multiply. And just to see where cross-multiplying comes from, that it's not some voodoo, that you still are doing logical algebra, that you're doing the same thing to both sides of the equation, you just need to appreciate that we're just multiplying both sides by both denominators.

So we have this ( 8 ) right over here on the left-hand side. If we wanna get rid of this ( 8 ) on the left-hand side in the denominator, we can multiply the left-hand side by ( 8 ). But in order for the equality to hold true, I can't do something to just one side. I have to do it to both sides. Similarly, similarly, if (laughs) I, if I wanna get this ( x + 1 ) out of the denominator, I could multiply by ( x + 1 ) right over here. But I have to do that on both sides if I want my equality to hold true.

And notice, when you do what we just did, this is going to be equivalent to cross-multiplying. Because these ( 8s ) cancel out, and this ( x + 1 ) cancels with that ( x + 1 ) right over there. And you are left with, you are left with ( (x + 1) ) times ( 7 ), and I could write it as ( 7(x + 1) ), is equal to ( 5 \times 8 ), is equal to ( 5 \times 8 ). Notice, this is exactly what you have done if you would've cross-multiplied. Cross-multiplication is just a shortcut of multiplying both sides by both the denominators.

We have ( 7(x + 1) ) is equal to ( 5 \times 8 ). And now we can go and solve the algebra. So distributing the ( 7 ), we get ( 7x + 7 ) is equal to ( 40 ). And then subtracting ( 7 ) from both sides, so let's subtract ( 7 ) from both sides, we are left with ( 7x ) is equal to ( 33 ). Dividing both sides by ( 7 ), we are left with ( x ) is equal to ( \frac{33}{7} ). And if we wanna write that as a mixed number, this is the same thing, let's see, this is the same thing as ( 4 \frac{5}{7} ), and we're done.

More Articles

View All
How People Disappear
Hey, Vsauce. Michael here. A few years ago in Minneapolis, an angry dad stormed into the retail store Target. His daughter, a high schooler, had been receiving coupons in the mail from the store for things like cribs and diapers. Was Target encouraging hi…
Snakes of South America | Primal Survivor
Huh, I thought this was one of the most dangerous snakes in Panama, the fer-de-lance, but this is not. This is a look-alike; this is a cat-eyed snake. But see those markings and see that spearhead-like shape on its head? That makes it look like a fer-de-l…
The Stoic Truth: Are You Sabotaging Your Own Success? | STOICISM INSIGHTS #stoicism
Welcome back to Stoicism Insights, your guide to unlocking the timeless wisdom of Stoic philosophy for a more fulfilling life. Today we’re delving into a topic that’s often overlooked: the negative habits that hinder our journey towards virtue and tranqui…
Housing Expert: “Why Home Prices Will Crash In 2026”
What’s up you guys, it’s Graham here, and we got to talk about what’s happening with housing prices. Because despite record high values, constant increases, and the worst affordability in 40 years, there’s actually some good news in that a few major housi…
Why Do We Play Games?
Hey, Vsauce. Michael here. Why do humans play games? Whether it’s a video game or a board game or a physical game, like soccer - or football. I don’t have to put the ball in the net to survive, and, even if I did, why would I invite a goalie and another …
Why Are Things Cute?
Hey, Vsauce. Michael here. And The Pet Collective offers 24-hour coverage of puppies and kittens. It’s really cute. But what is cute, scientifically? I mean, why do we like soft, cuddly things and why do cute things have a unique effect on us? Well, the …