yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving proportions 2 exercise examples | Algebra Basics | Khan Academy


3m read
·Nov 11, 2024

  • [Instructor] We have the proportion ( x - 9 ) over ( 12 ) is equal to ( \frac{2}{3} ), and we wanna solve for the ( x ) that satisfies this proportion. Now, there's a bunch of ways that you could do it. A lot of people, as soon as they see a proportion like this, they wanna cross-multiply. They wanna say, "Hey, three times ( x - 9 ) is going to be equal to two times ( 12 )." And that's completely legitimate. You would get, let me write that down.

So three times ( x - 9 ), three times ( x - 9 ) is equal to two times ( 12 ). So it would be equal to two times ( 12 ). And then you can distribute the three. You'd get ( 3x - 27 ) is equal to ( 24 ). And then you could add ( 27 ) to both sides, and you would get, let me actually do that. So let me add ( 27 ) to both sides, and we are left with ( 3x ) is equal to, is equal to, let's see, ( 51 ). And then ( x ) would be equal to ( 17 ). ( x ) would be equal to ( 17 ). And you can verify that this works. ( 17 - 9 ) is ( 8 ). ( \frac{8}{12} ) is the same thing as ( \frac{2}{3} ). So this checks out.

Another way you could do that, instead of just straight up doing the cross-multiplication, you could say, "Look, I wanna get rid of this ( 12 ) in the denominator right over here. Let's multiply both sides by ( 12 )." So if you multiply both sides by ( 12 ), on your left-hand side, you are just left with ( x - 9 ). And on your right-hand side, ( \frac{2}{3} ) times ( 12 ), well, ( \frac{2}{3} ) of ( 12 ) is just ( 8 ). And you could do the actual multiplication, ( \frac{2}{3} ) times ( \frac{12}{1} ). ( 12, 12 ) and ( 3 ), so ( 12 ) divided by ( 3 ) is ( 4 ). ( 3 ) divided by ( 3 ) is ( 1 ). So it becomes ( \frac{2 \cdot 4}{1} ), which is just ( 8 ).

And then you add ( 9 ) to both sides. So the fun of algebra is that as long as you do something that's logically consistent, you will get the right answer. There's no one way of doing it. So here you get ( x ) is equal to ( 17 ) again. And you can also, you can multiply both sides by ( 12 ) and both sides by ( 3 ), and then that would be functionally equivalent to cross-multiplying.

Let's do one more. So here, another proportion, and this time the ( x ) is in the denominator. But just like before, if we want, we can cross-multiply. And just to see where cross-multiplying comes from, that it's not some voodoo, that you still are doing logical algebra, that you're doing the same thing to both sides of the equation, you just need to appreciate that we're just multiplying both sides by both denominators.

So we have this ( 8 ) right over here on the left-hand side. If we wanna get rid of this ( 8 ) on the left-hand side in the denominator, we can multiply the left-hand side by ( 8 ). But in order for the equality to hold true, I can't do something to just one side. I have to do it to both sides. Similarly, similarly, if (laughs) I, if I wanna get this ( x + 1 ) out of the denominator, I could multiply by ( x + 1 ) right over here. But I have to do that on both sides if I want my equality to hold true.

And notice, when you do what we just did, this is going to be equivalent to cross-multiplying. Because these ( 8s ) cancel out, and this ( x + 1 ) cancels with that ( x + 1 ) right over there. And you are left with, you are left with ( (x + 1) ) times ( 7 ), and I could write it as ( 7(x + 1) ), is equal to ( 5 \times 8 ), is equal to ( 5 \times 8 ). Notice, this is exactly what you have done if you would've cross-multiplied. Cross-multiplication is just a shortcut of multiplying both sides by both the denominators.

We have ( 7(x + 1) ) is equal to ( 5 \times 8 ). And now we can go and solve the algebra. So distributing the ( 7 ), we get ( 7x + 7 ) is equal to ( 40 ). And then subtracting ( 7 ) from both sides, so let's subtract ( 7 ) from both sides, we are left with ( 7x ) is equal to ( 33 ). Dividing both sides by ( 7 ), we are left with ( x ) is equal to ( \frac{33}{7} ). And if we wanna write that as a mixed number, this is the same thing, let's see, this is the same thing as ( 4 \frac{5}{7} ), and we're done.

More Articles

View All
How a Tiny Dog Saved a National Geographic Expedition | Expedition Raw
Meet Scuba. This little gal might not look like a blood hound, but she helped out National Geographic in a huge way. My name is Alan Turchik, and I build cameras for National Geographic. My job takes me all over the world, deploying these camera systems. …
Is FIRE actually achievable? Can you retire early? (Financial Independence Retire Early)
Hey guys! Welcome back to the channel! In this video, we are going to be discussing one of my favorite topics to talk about, and that is, of course, financial independence and thus the ability to retire early. This is something that’s become a full-on tre…
Measuring area with tiled square units
What we’re going to do in this video is look at two rectangles that have the exact same area, and we’re going to measure each of them with a different square unit. So, this top unit right over here, this is a square foot. That means its height is one foo…
Regulate | Vocabulary | Khan Academy
All right wordsmiths, what’s up? The word of the day today is “regulate.” It means to make rules that control something. I’ll throw in a 10-second music break. Tell me if you can identify any other common English words that start with “Reg.” Alright, her…
Why Buying Coffee Makes You Poor
What’s up, you guys? It’s Graham here. So let’s dive into one of the most controversial and debated topics of financial advice in 2019, and that would be whether or not this cup of coffee is making you poor. That’s right! Today we’re gonna be talking abou…
15 One time Purchases That Have the Best ROI
Did you know that 90% of luxury purchases depreciate the moment you walk out of that store? But what if we told you there are some exceptions where spending big today could actually mean earning big tomorrow? When it comes to living the high life, every s…