yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Transformations, part 1 | Multivariable calculus | Khan Academy


4m read
·Nov 11, 2024

So I have talked a lot about different ways that you can visualize multi-variable functions. Functions that will have some kind of multi-dimensional input or output. These include three-dimensional graphs, which are very common, contour maps, vector fields, parametric functions.

But here, I want to talk about one of my all-time favorite ways to think about functions, which is as a transformation. So anytime you have some sort of function, if you're thinking very abstractly, I like to think that there's some sort of input space, and I'll draw it as a blob, even though, you know, that could be the real number line, so it should be a line. Or it could be three-dimensional space.

And then there's some kind of output space, and again, I just very vaguely think about it as this blob, but that could be, again, the real number line, the xy-plane, three-dimensional space. The function is just some way of taking inputs to outputs. Every time that we're trying to visualize something, like with a graph or a contour map, you're just trying to associate input-output pairs. You know, if f inputs, you know, three gets mapped to the vector (1, 2), it's a question of how do you associate the number 3 with that vector (1, 2).

And the thought behind transformations is that we're just going to watch the actual points of the input space move to the output space. I'll start with a simple example that's just a one-dimensional function. It'll have a single variable input, and it'll have a single variable output. So let's consider the function f(x) is equal to x squared minus 3.

And of course, the way we're used to visualizing something like this, it'll be as a graph. You might kind of be thinking of something roughly parabolic that's squished down by three. But here, I don't want to think in terms of graphs; I just want to say how do the inputs move to those outputs.

So as an example, if you go to 0, when you plug in 0, you're going to get negative 3. You know, 0 squared minus 3 is equal to negative 3. So somehow we want to watch zero move to negative three. And then similarly, let's say you plug in one, and you'd get one squared minus three is negative two. So somehow we want to watch one move to negative two.

And just to list another example here, let's say you were plugging in 3 itself, so 3 squared minus 3 is 9 minus 3 is 6. So somehow, in this transformation, we want to watch 3 move to the number six. And with a little animation, we can watch this happen. We can actually watch what it looks like for all these numbers to move to their corresponding outputs.

So here we go; each number will move over and land on its output. I'll clear up the board here, so I kept track of what the original input numbers are by just kind of writing them on top here, and that was a way of just watching how it moves. And I'll play it again here; let's just watch where each number from the input space moves over to the output.

And with single variable functions, this is a little bit nice because it gives this sense of inputs moving to outputs. But where it gets fun is in the context of multi-variable functions. So now, let me consider a function that has a one-dimensional input and a two-dimensional output. And specifically, it'll be f(x) is equal to cosine of x and the y component will be x times sine of x.

So just to think about a couple examples, if you plug in something like zero and think about where zero ought to go, you would have f(0) is equal to cosine of 0, which is 1, and then 0 times anything is 0. So somehow we’re going to watch 0 move over to the point (1, 0), right? So this is where we expect 0 to land.

And let's think about like pi. So f(pi), and then cosine of pi is negative one. This is going to be pi multiplied by, and sine of pi is zero, so that'll again be zero. So, you know, this little guy is where zero lands, and we expect that this is going to be where the value pi lands.

And if we watch this take place and we actually watch each element of the input space move over to the output space, we get something like this. And again, this is just kind of a nice way to think about what's actually going on. You might ask questions about whether the space ends up getting stretched or squished.

And notice that this is also what a parametric plot of this function would look like if you interpret it as a parametric function. This is what you get in the end. But whereas in parametric plots you lose input information, here you can kind of see where things move as you go from one to the other.

And in the next video, I'm going to talk about how you can interpret functions with a two-dimensional input and a two-dimensional output as a transformation.

More Articles

View All
This Is Your Brain on Nature | Explorer
[Music] As a nature writer, I’ve always intuitively known that it was healthy for human beings to be out in the natural world. But it’s amazing what science has proven about what nature does to your brain. Some of the scientists I’ve been talking to would…
Simon Sinek: Actually, the Customer Is Not Always Right | Big Think
I think it’s funny when we are given advice to always put the customer first. That means employees come second inherently if you’re going to put customer first. Customers come and go. Obviously, we want to work to keep them loyal, but it’s employees who s…
JUST BOUGHT MY 5TH PROPERTY!!
What’s up you guys? So I actually made this video two weeks ago, and then as soon as I was about to post it, I thought, “What if it doesn’t go through? What if something happens? What if I don’t close on it? I’ll look like a total idiot if I upload this.”…
Death From Space — Gamma-Ray Bursts Explained
Imagine if you could gather the energy from every star within a hundred million light years. From thousands of galaxies, each with billions of stars. Imagine, you could take this kind of power, and use it to fire the biggest super-weapon in the universe. …
Polynomial special products: perfect square | Algebra 2 | Khan Academy
What we’re going to do in this video is practice squaring binomials. This is something that we’ve done in the past, but we’re going to do it with slightly more involved expressions. But let’s just start with a little bit of review. If I were to ask you, w…
Neil deGrasse Tyson: Your Ego and the Cosmic Perspective | Big Think Mentor | Big Think
There’s something about the cosmic perspective which for some people is enlightening, and for other people it’s terrifying. For those who are terrified by it, they’re here on earth, and they have a certain self-identity. Then, they learn that earth is tin…