yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
Photos Reveal the Changing Face of Saudi Arabia’s Women | Exposure
[Music] I’m always surprised when I’m in Saudi Arabia because I go there with a sort of sense of dread of how difficult it will be to photograph and how impenetrable the place is. And then I find myself there and having fun. The women in Saudi Arabia are…
Neuroprosthetics and deep brain stimulation: Two big neuroscience breakthroughs | Susan Hockfield
One issue that I think haunts all of us is enabling the disabled. How can we make it possible for people who have lost the ability to use their limbs – either by amputation or by stroke – how do we give them a better life? How do we make their lives more …
Solving equations by graphing: intro | Algebra 2 | Khan Academy
We’re told this is the graph of y is equal to three halves to the x, and that’s it right over there. Use the graph to find an approximate solution to three halves to the x is equal to five. So pause this video and try to do this on your own before we work…
Choreographer Elizabeth Streb on Why Dance Should Be More Like Football | Big Think
PopAction is a form that I and Streb, you know, the larger Streb which is pretty much hundreds and hundreds of dancers at this point have been developing over the last 30 years. If we were just an urban kind of crazy set of action aficionados, it would be…
Western Australia's Shark Attack Causes | SharkFest
[music playing] NARRATOR: And while sharks have always been present along this massive shoreline, starting in 2010, they become a problem. More than 60 attacks in just 10 years, triple the number of incidents from the preceding decade—it’s an unprecedent…
Women entrepreneurs, example not exception - Gayle Tzemach Lemmon
We do not invest in victims; we invest in survivors. In ways both big and small, the narrative of the victim shapes the way we see women. You can’t count what you don’t see, and we don’t invest in what’s invisible to us. But this is the face of resilience…