yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
The Stock Market's Valuation is Getting Ridiculous...
It’s no secret that the stock market is currently overvalued, but what should we as investors do about it? I have a look at this chart, which is tracking a metric called the Shiller PE. This metric was created by the American economist Robert Shiller, who…
The Right Reason and Way to Approach Strategics
All right, so the next panel that we have will discuss the right reasons and right ways to approach strategics. The speakers on this panel are from Genentech, J&J, Medtronic, and Novartis, and they all focus on finding opportunities and partners that …
Think Tank! - Smarter Every Day 11
Hello my friends! Hey, it’s me Destin. I’m at the ordnance museum; let’s go learn something. I’m just kidding! This is a Russian tank, a T-34. Hey, this is the first tank, or actually the first vehicle to be called “tank.” This is the um, the Mark 4. The…
Revealing My ENTIRE $13 Million Investment Portfolio | 30 Years Old
What’s up you guys? It’s Graham here. So, a little over a year ago, I made a video breaking down in extreme detail every single one of my investments: how I started, how I built them up, how much money they make, and the lessons I’ve learned along the way…
The Sky Table | Barkskins
[music playing] [thud] [panting] [thud] [thud] [thud] Ah. [thud] [cracking] [branches crunching] Excellent work, [inaudible] Sal. Come with me. There are more that need to be pulled from the sky. This way. [birds singing] I might be of help if you tell me…
Ask me anything with Sal Khan: March 27 | Homeroom with Sal
Hi everyone! Welcome to our daily live stream. This is why we’ve almost, we’ve been doing this for a little bit over two weeks. For those of you all who are new to this, the whole point of this is Khan Academy is a not-for-profit with a mission of providi…