yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy
So we have ( H(x) ) is equal to ( 5x^{1⁄4} + 7 ) and we want to find what is ( H’ ) of 16, or what is the derivative of this function when ( x ) is equal to 16. And like always, pause this video and see if you can figure it out on your own. All right, w…
It Started: The Worst Market Collapse In 50 Years | Michael Burry
What’s up, Graham? It’s guys here, and it’s official: the stock market makes absolutely no sense. Despite weak earnings, a recession that’s all but confirmed, and JP Morgan’s recent warning that the market could fall another 20%, prices have begun to do t…
They Turn Ice Into Ice Cubes | Continent 7: Antarctica
[Music] The Coast Guard Cutter Polar Star is the most powerful icebreaker in the world. Our mission is to cut a channel that’s 18 miles long through 8 to 12 feet of ice so that the supply ships can resupply the continent. This is where we earn our money. …
What Is The Scariest Thing?
[Michael breathing heavily] [laughing nervously] Everyone is scared of something. But is there something that everyone is scared of? What is the scariest thing possible? ♪ [Michael] So what is the scariest thing? - Is it thunder? - [thunder crackles] Shad…
Comparing income trends across countries | Macroeconomics | Khan Academy
The goal of this video is to understand how median per capita income after taxes has trended in the United States in comparison to some other countries over a 30-year period, and the 30-year period for this chart is from 1980 to 2010. So, for example, in…
Subtraction by breaking apart
We’re told that Lindy isn’t sure how to subtract 853. We are told Lindy isn’t sure how to subtract 853 minus 283. Help Lindy by choosing an expression that is the same as 853 minus 283. So pause this video and see if you can answer it on your own before w…