yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
Naming two isobutyl groups systematically | Organic chemistry | Khan Academy
In the last video, we named this molecule using the common names for this group right over here, and I thought it would be fun to also use to do the same thing, but use the systematic name. So, in the last video, we called this isobu, but if we wanted to …
Worked example: rational vs. irrational expressions (unknowns) | High School Math | Khan Academy
We’re told let A and B be rational numbers and let B be non-zero. They had to say let B be non-zero because we’re about to divide by B. Is A over B rational or irrational? Well, let’s think about it. They’re both rational numbers, so that means that A, s…
Words Are the Most Powerful Drug | Origins: The Journey of Humankind
Humans stand alone in the animal kingdom. Our power over nature is unparalleled. What separates us? What is it that makes us human? The answer lies in our mastery of communication: the power to express complex thoughts and ideas; to organize and think col…
First Image of a Black Hole!
This is the first-ever image of a black hole released by the Event Horizon Telescope collaboration on April 10th, 2019. It shows plasma orbiting the supermassive black hole at the center of the galaxy M87. The bright region shows where plasma is coming to…
Worked examples: slope-intercept intro | Mathematics I | High School Math | Khan Academy
Do some practice examples from our intro to slope-intercept exercise. What is the slope of y is equal to negative 4x minus 3? So, you might already recognize this is in slope-intercept form. Just as a reminder, slope-intercept form is y is equal to mx p…
Identifying proportional relationships from graphs | 7th grade | Khan Academy
We are asked how many proportional relationships are shown in the coordinate plane below, and we have the choices. But let’s actually look at the coordinate plane below to think about how many proportional relationships are depicted here. So pause this vi…