yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
Believe the no, but not the why.
There are a couple pieces of advice that we give to YC founders when talking to investors. I think the first is: believe the “no,” but don’t believe the “why.” You’re going to get a lot of “no”s when pitching, and more often than not, the investor will no…
2016 Breakthrough Junior Challenge with Priscilla Chan | National Geographic
The Breakthrough Junior Challenge is a video competition in which we invite you to submit creative and exciting explanations of ideas in math and science. Last year, Ryan Chester won the first Breakthrough Junior Challenge prize. “Make a video about scie…
The Power Of Walking Away
Somehow, many people feel obligated to give away their time and energy to others. But why? Perhaps they feel the need to prove themselves or have the intense desire to be liked? The problem is that by caring too much about opinions of other people, you be…
The Origins of Disgust
Being impressed by the cognitive abilities of a chimpanzee isn’t just good for them; it is good for us, because it helps us learn about our own evolutionary history. Comparing the psychology of humans to the psychology of other primates is a great way to …
LC natural response derivation 1
In this video, we’re going to begin the derivation of the LC natural response, the response of an inductor capacitor circuit. This is a difficult derivation, but it really pays off in the end. There’s a real fun surprise at the end, and that is this is wh…
The mole and Avogadro's number | Moles and molar mass | High school chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of average atomic mass, which we began to realize could be a very useful way of thinking about a mass at an atomic level or at a molecular level. But what we’re going to do in this video is connect …