yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
Warren Buffett: How to Make Your First $100,000 (5 Steps)
If you want to make your first or next one hundred thousand dollars, you need to follow these five simple lessons from Warren Buffett. The majority of content out there about Warren Buffett gets it completely wrong. That content focuses on how Warren Buff…
Everything wrong with my $100,000 remodel ...
What’s up guys? It’s Graham here, and I got to say I’m really happy that so many of you have been reaching out to me asking for an update on the status of this renovation. I’ve been a little hesitant about posting sooner because I wanted to wait until mor…
Killer Red Fox – Ep. 5 | National Geographic Presents: IMPACT With Gal Gadot
GAL: “We live for the next seven generations. Everything we do, and everything we don’t do, impacts the next seven generations.” This way of life has been passed down to Chief Shirell from her ancestors, whose land is being lost to climate change. Committ…
Supervenience
One of the questions was, “Um, how is it that logic supervenes on our brains?” And I think it’s a good question. Um, I think it’s a question that we’re not currently in a position to give a full answer to. Um, for that, our understanding of how the bra…
Solving exponential equations using exponent properties (advanced) | High School Math | Khan Academy
So let’s get even more practice solving some exponential equations. I have two different exponential equations here, and like always, pause the video and see if you can solve for x in both of them. All right, let’s tackle this one in purple first. You mi…
Warren Buffett: How to Make Money During a Recession
So it seems like pretty much everyone is worried about the economy right now, and for good reason. Inflation is at a multi-generational high. The last time inflation was this high in the United States was in 1981, more than four decades ago. In order to g…