yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

_-substitution: defining _ (more examples) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we're going to do in this video is get some more practice identifying when to use u-substitution and picking an appropriate u. So, let's say we have the indefinite integral of natural log of X to the 10th power, all of that over X, DX.

Does u-substitution apply, and if so, how would we make that substitution? Well, the key for u-substitution is to see: do I have some function and its derivative? You might immediately recognize that the derivative of natural log of X is equal to 1 over X. To make it a little bit clearer, I could write this as the integral of natural log of X to the 10th power times 1 over X, DX.

Now it's clear we have some function, natural log of X, being raised to the tenth power, but we also have its derivative right over here, 1 over X. So, we could make the substitution; we could say that U is equal to the natural log of X. The reason why I pick natural log of X is because I see something: I see its exact derivative here, or something close to its derivative—in this case, it's its exact derivative.

And so then I could say D u DX is equal to 1 over X, which means that D U is equal to 1 over X DX. And so here you have it; this right over here is d u, and then this right over here is our u. So this nicely simplifies to the integral of U to the 10th power, U to the 10th power D U.

And so you would evaluate what this is, find the antiderivative here, and then you would back substitute the natural log of X for u.

And to actually evaluate this indefinite integral, let's do another one. Let's say that we have the integral of—let's do something interesting here. Let's say the integral of tan(X) DX. Does u-substitution apply here?

And at first, you might say, well, I just have a tangent of X; where is its derivative? But one interesting thing to do is, well, we could rewrite tangent in terms of sine and cosine. So we could write this as the integral of sine of X over cosine of X DX.

And now you might say, well, where does u-substitution apply here? Well, there's a couple of ways to think about it. You could say the derivative of sine of X is cosine of X, but you're now dividing by the derivative as opposed to multiplying by it. But more interestingly, you could say the derivative of cosine of X is negative sine of X.

We don't have a negative sine of X, but we can do a little bit of engineering. We can multiply by negative one twice. So we could say the negative of the negative sine of X, and I stuck one of them. You could say negative one’s outside of the integral, which comes straight from our integration properties. This is equivalent; I can put a negative on the outside and a negative on the inside so that this is the derivative of cosine of X.

And so now this is interesting; in fact, let me rewrite this. This is going to be equal to negative the negative integral of 1 over cosine of X times negative sine of X DX.

Now, does it jump out at you? What you might be? Well, I have a cosine of X in the denominator, and I have its derivative. So what if I made U equal to cosine of X? U is equal to cosine of X, and then D u DX would be equal to negative sine of X. Or I could say that D U is equal to negative sine of X DX.

And just like that, I have my D u here, and this, of course, is my U. And so my whole thing has now simplified to it's equal to the negative indefinite integral of 1 over U, 1 over U D U, which is a much easier integral to evaluate. And then, once you evaluate this, you back substitute cosine of X for U.

More Articles

View All
Shower Thoughts To Keep You Up All Night #Marathon
So here are shower thoughts that everyone asked or… right? Well, at least some people asked for it. But you know what? No one has probably ever asked, “Where are you?” in sign language before. Actually, the phrase “Where are you?” was probably rarely used…
This is why we can't have nice things
This is a video about things like cars, phones, and light bulbs and an actual conspiracy that made them worse. This video was sponsored by NordVPN, more about them at the end of the video. I am outside Livermore Fire Station, number six. And in here, they…
Proving the SSS triangle congruence criterion using transformations | Geometry | Khan Academy
What we’re going to do in this video is see that if we have two different triangles where the corresponding sides have the same measure. So this orange side has the same length as this orange side. This blue side has the same length as this blue side. Thi…
Why Pride Is the Worst | The Seven Deadly Sins | PRIDE
Of all angels, Lucifer was the most magnificent God had created. Aware of his beauty, brilliance, and many qualities, Lucifer felt elevated above the other angels and, at some point, even above God. He wanted to be like God, so he created a throne for him…
Princess! NOOOO! ... IMG! #32
This is how Easter eggs are made. And don’t walk. Or bike. It’s episode 32 of IMG! Best haircut… ever. And creepy t-shirt Abraham Lincoln. But hunting is awesome. Oh. Lishoffs rules. He made the Simpson’s alphabet, a superhero alphabet and curser bullies.…
Comparing unit fractions
So which of the following numbers is a greater: one third or one fifth? Pause this video and try to answer that all right. Now let’s think about this together, and the way that I can best think about it is by visualizing them. So let’s imagine a hole. So…