yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphical limit example


2m read
·Nov 11, 2024

We are asked what is a reasonable estimate for the limit of g of x as x approaches 3. So, what we have here in blue, this is the graph of y is equal to g of x, and we want to think about what is the limit as x approaches 3.

So, this is x equals 3 here. So, what you need to do is think about what is the limit of this function as we approach 3 from the left. And we're also going to think about what is the limit of this function, what does it appear to be from the graph as we approach this value from the right.

If it looks like we're approaching the same value, then that would be a reasonable estimate for the limit. The reason why they say reasonable estimate is because we're going to do it by inspection. We don't have a lot more information about the graph to know for sure, but from the graph, we can come up with a reasonable estimate. So pause this video and see if you can figure it out on your own.

All right, so let's think about it. Let's think about it in two parts. Let's think about approaching x equals three, or let's think about the limit as x approaches three from the left. As we approach x equals three from the left, our graph seems to... Our graph seems to, if I just eyeball it, seems to be approaching the value 4.

So from the left, it looks like we are approaching 4. Approaching, or let me write it this way: g of x approaching 4 as x approaches 3 from the left. Now, let's think about it from the right. As x approaches 3 from the right, what does it look like g of x is approaching? Well, it looks like g of x is approaching negative 3 as x approaches 3 from the right.

So I could say g of x approaching negative 3 as x approaches 3 from the right. And so we have two different values here. When we approach from the left, it looks like g of x is approaching 4, and when we approach from the right, it looks like g of x is approaching negative 3.

And so, because of that, we would say that this limit right over here... It's reasonable to say that this limit doesn't exist. So I'll write does not exist based on looking at this graph right over here. A good clue that it won't exist is the x value where we're trying to find the limit at. You see this jump in the graph right over here? It is discontinuous; it jumps from one value to another, which is a good clue that the limit might not exist here.

More Articles

View All
Chasing Microbes: The Secret Superheroes of Our Planet | National Geographic
There are places all over the world where methane is coming out of the seafloor. This is kind of concerning because methane is a very strong greenhouse gas. We think a lot about carbon dioxide heating up the planet, but methane is about 25 times worse. An…
Curvature formula, part 5
So let’s sum up where we are so far. We’re looking at this formula and trying to understand why it corresponds to curvature, why it tells you how much a curve actually curves. The first thing we did is we noticed that this numerator corresponds to a cert…
Mapping the Mysterious Islands Near San Francisco | Best Job Ever
Ross and I went out to the ferons to capture conservation stories and map The Refuge. The Falon National Wildlife Refuge is the largest seabird nesting colony in the lower 48 states, and it’s also an incredibly important breeding ground for marine mammals…
Answering Google's Most Asked Questions of 2022
For most of Google’s relatively short existence, we’ve searched small, silly, insignificant questions - things like how to tell if a papaya is ripe. The color is almost fully yellow, and the feeling is slightly soft. Don’t forget to scoop out the seeds! S…
Do Cell Phones Cause Brain Tumors?
Do cellphones cause brain cancer? Yeah, if you’re on them a lot, yes, it can’t be good for you. I did decide to stop, you know, putting the phone whilst I’m driving in my groin, inside my movie and over there, in case it’s gonna cause testicular cancer. …
Second derivative test | Using derivatives to analyze functions | AP Calculus AB | Khan Academy
So what I want to do in this video is familiarize ourselves with the second derivative test. Before I even get into the nitty-gritty of it, I really just want to get an intuitive feel for what the second derivative test is telling us. So let me just draw…