yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Polynomial special products: difference of squares | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Earlier in our mathematical adventures, we had expanded things like ( x + y \times x - y ). Just as a bit of review, this is going to be equal to ( x \times x ), which is ( x^2 ), plus ( x \times \text{negative } y ), which is negative ( xy ), plus ( y \times x ), which is plus ( xy ), and then minus ( y \times y ) or you could say ( y \times \text{negative } y ), so it's going to be minus ( y^2 ). Negative ( xy ) plus ( xy ) means this is just going to simplify to ( x^2 - y^2 ).

This is all review; we covered it. When we thought about factoring things that are differences of squares, we thought about this when we were first learning to multiply binomials. What we're going to do now is essentially just do the same thing but do it with slightly more complicated expressions.

So, another way of expressing what we just did is we could also write something like ( a + b \times a - b ) is going to be equal to what? Well, it's going to be equal to ( a^2 - b^2 ). The only difference between what I did up here and what I did over here is instead of an ( x ), I wrote an ( a ); instead of a ( y ), I wrote a ( b ).

Given that, let's see if we can expand and then combine like terms. If I'm multiplying these two expressions, say I'm multiplying ( 3 + 5x^4 ) times ( 3 - 5x^4 ), pause this video and see if you can work this out.

All right, well, there's two ways to approach it. You could just approach it exactly the way that I approached it up here, but we already know that when we have this pattern where we have something plus something times that same original something minus the other something, well, that's going to be of the form of this thing squared minus this thing squared.

Remember, the only reason why I'm applying that is I have a ( 3 ) right over here and here. So the ( 3 ) is playing the role of the ( a ). So, let me write that down. That is our ( a ), and then the role of the ( b ) is being played by ( 5x^4 ), so that is our ( b ) right over there.

This is going to be equal to ( a^2 - b^2 ), but our ( a ) is ( 3 ), so it's going to be equal to ( 3^2 - ) and then our ( b ) is ( 5x^4 ) minus ( 5x^4 ) squared. Now, what does all of this simplify to? Well, this is going to be equal to ( 3^2 ), which is ( 9 ), and then minus ( 5x^4 ) squared.

Let’s see, ( 5^2 ) is ( 25 ), and then ( x^4 ) squared, well that is just going to be ( x^{4 \times 4} ), which is just ( x^8 ). Another way to think about it: our exponent properties say this is the same thing as ( 5^2 \times x^{4 , \text{squared}} ). If I raise them to an exponent and then raise that to another exponent, I multiply the exponents, and there you have it.

Let's do another example. Let's say that I were to ask you: what is ( 3y^2 + 2y^5 \times 3y^2 - 2y^5 )? Pause this video and see if you can work that out.

Well, we're going to do it the same way. You can, of course, always just try to expand it out the way we did originally, but we could recognize here that, hey, I have an ( a + b ) times the ( a - b ), so that's going to be equal to our ( a^2 ).

So, what's ( 3y^2 )? Well, that's going to be ( 9y^4 ) minus our ( b^2 ). Well, what's ( 2y^5 ) squared? Well, ( 2^2 ) is ( 4 ), and ( y^5 ) squared is ( y^{5 \times 2} ) or ( y^{10} ).

And there's no further simplification that I could do here; I can't combine any like terms, and so we are done here as well.

More Articles

View All
If
Hey, Vsauce. Michael here. Earlier this month, I travelled to Kourou in French Guiana with euronews to watch the launch of Vega Rocket, if it happened while I was there. Waiting at the observation point with only minutes to go, the launch was postponed be…
How Much Money I Make Selling Merch
What’s up guys? It’s Graham here. So, about 10 months ago, my buddy and I met up for lunch and came up with a wild original concept that’s never been done before here on YouTube: selling merch. After all, it seems like pretty much every YouTuber is doing …
Spacex Booster Catch: $3 BILLION BUSTED!!
Everyone is gushing over this now. I know what you’re thinking — there is no way, no way that you can possibly dunk on this. It’s engineering amazing! Well, yeah, it looks impressive. I wonder how much the U.S. taxpayer paid for this, and the answer is th…
Mean Tweets with Neil deGrasse Tyson - Movies Edition | StarTalk
And now for another edition of Neil deGrasse Tyson reads mean tweets. Josh from school, that’s his Twitter handle: “Josh from school, Neil Tyson is such a dweeb. Nobody watches science fiction movies for the science.” I wouldn’t say nobody watches the s…
Chain Drop Answer 2
All right, are you ready for the moment of truth? Let’s drop these two objects at exactly the same time and see which one hits the ground first. Ready? 3, 2, 1. Wow! Did you see that? The one connected to the chain landed just before the other free weight…
Buddhism as a "Science of the Mind"
The whole sort of atheist critique of religion doesn’t really address Buddhism, insofar as Buddhism is established really as a science of the mind. It’s based on observation of the mind. And everything that Buddha taught can be empirically verified throug…