yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Polynomial special products: difference of squares | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Earlier in our mathematical adventures, we had expanded things like ( x + y \times x - y ). Just as a bit of review, this is going to be equal to ( x \times x ), which is ( x^2 ), plus ( x \times \text{negative } y ), which is negative ( xy ), plus ( y \times x ), which is plus ( xy ), and then minus ( y \times y ) or you could say ( y \times \text{negative } y ), so it's going to be minus ( y^2 ). Negative ( xy ) plus ( xy ) means this is just going to simplify to ( x^2 - y^2 ).

This is all review; we covered it. When we thought about factoring things that are differences of squares, we thought about this when we were first learning to multiply binomials. What we're going to do now is essentially just do the same thing but do it with slightly more complicated expressions.

So, another way of expressing what we just did is we could also write something like ( a + b \times a - b ) is going to be equal to what? Well, it's going to be equal to ( a^2 - b^2 ). The only difference between what I did up here and what I did over here is instead of an ( x ), I wrote an ( a ); instead of a ( y ), I wrote a ( b ).

Given that, let's see if we can expand and then combine like terms. If I'm multiplying these two expressions, say I'm multiplying ( 3 + 5x^4 ) times ( 3 - 5x^4 ), pause this video and see if you can work this out.

All right, well, there's two ways to approach it. You could just approach it exactly the way that I approached it up here, but we already know that when we have this pattern where we have something plus something times that same original something minus the other something, well, that's going to be of the form of this thing squared minus this thing squared.

Remember, the only reason why I'm applying that is I have a ( 3 ) right over here and here. So the ( 3 ) is playing the role of the ( a ). So, let me write that down. That is our ( a ), and then the role of the ( b ) is being played by ( 5x^4 ), so that is our ( b ) right over there.

This is going to be equal to ( a^2 - b^2 ), but our ( a ) is ( 3 ), so it's going to be equal to ( 3^2 - ) and then our ( b ) is ( 5x^4 ) minus ( 5x^4 ) squared. Now, what does all of this simplify to? Well, this is going to be equal to ( 3^2 ), which is ( 9 ), and then minus ( 5x^4 ) squared.

Let’s see, ( 5^2 ) is ( 25 ), and then ( x^4 ) squared, well that is just going to be ( x^{4 \times 4} ), which is just ( x^8 ). Another way to think about it: our exponent properties say this is the same thing as ( 5^2 \times x^{4 , \text{squared}} ). If I raise them to an exponent and then raise that to another exponent, I multiply the exponents, and there you have it.

Let's do another example. Let's say that I were to ask you: what is ( 3y^2 + 2y^5 \times 3y^2 - 2y^5 )? Pause this video and see if you can work that out.

Well, we're going to do it the same way. You can, of course, always just try to expand it out the way we did originally, but we could recognize here that, hey, I have an ( a + b ) times the ( a - b ), so that's going to be equal to our ( a^2 ).

So, what's ( 3y^2 )? Well, that's going to be ( 9y^4 ) minus our ( b^2 ). Well, what's ( 2y^5 ) squared? Well, ( 2^2 ) is ( 4 ), and ( y^5 ) squared is ( y^{5 \times 2} ) or ( y^{10} ).

And there's no further simplification that I could do here; I can't combine any like terms, and so we are done here as well.

More Articles

View All
Pedigree for determining probability of exhibiting sex linked recessive trait | Khan Academy
We are told the pedigree chart represents the inheritance of color blindness through three generations, and we see this here. The standard convention is a square is male, a circle is female. If it’s colored in, that means that they exhibit the trait; in t…
The Stoic Guide To Overcoming The Desire To Escape Everything | STOICISM INSIGHTS
Isn’t it a bit strange that in this vast world we often stick to the same small corners where we were born? Here we are, on this huge spinning globe, and many of us never venture far from where our journey began. Think about it: how often do we find ourse…
Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy
Let’s take, let’s do some examples where we’re finding the sums of finite geometric series, and let’s just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common r…
Tracy Young on Scaling PlanGrid to 400+ People with YC Partner Kat Manalac
All right, Tracy, welcome to the podcast. Thank you for having me! How you doing? I’m doing good, thank you. Cool, so your company’s PlanGrid, and you were in the winter 2012 batch. For those who don’t know, PlanGrid is in the construction industry, b…
r-selected and K-selected population growth strategies | High school biology | Khan Academy
What we’re going to do in this video is talk about different population growth strategies for different species and think about if we can come up with a broad categorization or if there’s a broad categorization already out there for us. We see that there…
Why the Future of Cars is Electric
I was invited here, to Munich, by BMW, the sponsor of this video, to find out why the future of cars is electric. But electric cars are actually nothing new—they date back to 1832, well before the first gasoline-powered car. In fact, the first car to go f…