yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Polynomial special products: difference of squares | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Earlier in our mathematical adventures, we had expanded things like ( x + y \times x - y ). Just as a bit of review, this is going to be equal to ( x \times x ), which is ( x^2 ), plus ( x \times \text{negative } y ), which is negative ( xy ), plus ( y \times x ), which is plus ( xy ), and then minus ( y \times y ) or you could say ( y \times \text{negative } y ), so it's going to be minus ( y^2 ). Negative ( xy ) plus ( xy ) means this is just going to simplify to ( x^2 - y^2 ).

This is all review; we covered it. When we thought about factoring things that are differences of squares, we thought about this when we were first learning to multiply binomials. What we're going to do now is essentially just do the same thing but do it with slightly more complicated expressions.

So, another way of expressing what we just did is we could also write something like ( a + b \times a - b ) is going to be equal to what? Well, it's going to be equal to ( a^2 - b^2 ). The only difference between what I did up here and what I did over here is instead of an ( x ), I wrote an ( a ); instead of a ( y ), I wrote a ( b ).

Given that, let's see if we can expand and then combine like terms. If I'm multiplying these two expressions, say I'm multiplying ( 3 + 5x^4 ) times ( 3 - 5x^4 ), pause this video and see if you can work this out.

All right, well, there's two ways to approach it. You could just approach it exactly the way that I approached it up here, but we already know that when we have this pattern where we have something plus something times that same original something minus the other something, well, that's going to be of the form of this thing squared minus this thing squared.

Remember, the only reason why I'm applying that is I have a ( 3 ) right over here and here. So the ( 3 ) is playing the role of the ( a ). So, let me write that down. That is our ( a ), and then the role of the ( b ) is being played by ( 5x^4 ), so that is our ( b ) right over there.

This is going to be equal to ( a^2 - b^2 ), but our ( a ) is ( 3 ), so it's going to be equal to ( 3^2 - ) and then our ( b ) is ( 5x^4 ) minus ( 5x^4 ) squared. Now, what does all of this simplify to? Well, this is going to be equal to ( 3^2 ), which is ( 9 ), and then minus ( 5x^4 ) squared.

Let’s see, ( 5^2 ) is ( 25 ), and then ( x^4 ) squared, well that is just going to be ( x^{4 \times 4} ), which is just ( x^8 ). Another way to think about it: our exponent properties say this is the same thing as ( 5^2 \times x^{4 , \text{squared}} ). If I raise them to an exponent and then raise that to another exponent, I multiply the exponents, and there you have it.

Let's do another example. Let's say that I were to ask you: what is ( 3y^2 + 2y^5 \times 3y^2 - 2y^5 )? Pause this video and see if you can work that out.

Well, we're going to do it the same way. You can, of course, always just try to expand it out the way we did originally, but we could recognize here that, hey, I have an ( a + b ) times the ( a - b ), so that's going to be equal to our ( a^2 ).

So, what's ( 3y^2 )? Well, that's going to be ( 9y^4 ) minus our ( b^2 ). Well, what's ( 2y^5 ) squared? Well, ( 2^2 ) is ( 4 ), and ( y^5 ) squared is ( y^{5 \times 2} ) or ( y^{10} ).

And there's no further simplification that I could do here; I can't combine any like terms, and so we are done here as well.

More Articles

View All
Introduction to one-dimensional motion with calculus | AP Calculus AB | Khan Academy
What we’re going to do in this video is start to think about how we describe position in one dimension as a function of time. So we could say our position, and we’re going to think about position on the x-axis as a function of time. We could define it by…
Why Should We Go to Mars? | MARS
[Music] The reason humans should go to Mars is because we’re human. I mean, we are an exploring species. It’s what’s made us the dominant species on this planet. If we only lived in one little plot of land on Earth and we never went anywhere, I would say,…
15 Things You Can LEARN from LUXURY BRANDS
We all have our favorite luxury brands, brands that tug at our heartstrings when we see them in store windows, as we slow our pace down to absorb the beauty of the products on display. But it’s more than just the beautiful display, isn’t it? Everything ab…
Finding a Cancer Killer | Breakthrough
NARRATOR: Working out of the University of Pennsylvania, Dr. June has been developing a new technology to leverage the immune system’s T-cells to fight and kill leukemia in mice. [squeaking] CARL JUNE: Yeah. I have been through a long journey. So I was a…
Ask Sal Anything! Homeroom Wednesday, July 22
Foreign Hi everyone, welcome to our homeroom live stream. Uh, Sal here from Khan Academy. I do have one announcement. I think we’ve already made this on social media and email, but just to make sure everyone’s on the same page: today was supposed to be t…
Making $500 Per Day Washing Cars | Undercover Millionaire
This is Tyler. Two years ago, he sent me a handwritten letter about how he started a mobile car washing business in high school, made enough money to pursue it full-time after graduating, and since he found my videos helpful, he offered to wash my car for…