yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Polynomial special products: difference of squares | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Earlier in our mathematical adventures, we had expanded things like ( x + y \times x - y ). Just as a bit of review, this is going to be equal to ( x \times x ), which is ( x^2 ), plus ( x \times \text{negative } y ), which is negative ( xy ), plus ( y \times x ), which is plus ( xy ), and then minus ( y \times y ) or you could say ( y \times \text{negative } y ), so it's going to be minus ( y^2 ). Negative ( xy ) plus ( xy ) means this is just going to simplify to ( x^2 - y^2 ).

This is all review; we covered it. When we thought about factoring things that are differences of squares, we thought about this when we were first learning to multiply binomials. What we're going to do now is essentially just do the same thing but do it with slightly more complicated expressions.

So, another way of expressing what we just did is we could also write something like ( a + b \times a - b ) is going to be equal to what? Well, it's going to be equal to ( a^2 - b^2 ). The only difference between what I did up here and what I did over here is instead of an ( x ), I wrote an ( a ); instead of a ( y ), I wrote a ( b ).

Given that, let's see if we can expand and then combine like terms. If I'm multiplying these two expressions, say I'm multiplying ( 3 + 5x^4 ) times ( 3 - 5x^4 ), pause this video and see if you can work this out.

All right, well, there's two ways to approach it. You could just approach it exactly the way that I approached it up here, but we already know that when we have this pattern where we have something plus something times that same original something minus the other something, well, that's going to be of the form of this thing squared minus this thing squared.

Remember, the only reason why I'm applying that is I have a ( 3 ) right over here and here. So the ( 3 ) is playing the role of the ( a ). So, let me write that down. That is our ( a ), and then the role of the ( b ) is being played by ( 5x^4 ), so that is our ( b ) right over there.

This is going to be equal to ( a^2 - b^2 ), but our ( a ) is ( 3 ), so it's going to be equal to ( 3^2 - ) and then our ( b ) is ( 5x^4 ) minus ( 5x^4 ) squared. Now, what does all of this simplify to? Well, this is going to be equal to ( 3^2 ), which is ( 9 ), and then minus ( 5x^4 ) squared.

Let’s see, ( 5^2 ) is ( 25 ), and then ( x^4 ) squared, well that is just going to be ( x^{4 \times 4} ), which is just ( x^8 ). Another way to think about it: our exponent properties say this is the same thing as ( 5^2 \times x^{4 , \text{squared}} ). If I raise them to an exponent and then raise that to another exponent, I multiply the exponents, and there you have it.

Let's do another example. Let's say that I were to ask you: what is ( 3y^2 + 2y^5 \times 3y^2 - 2y^5 )? Pause this video and see if you can work that out.

Well, we're going to do it the same way. You can, of course, always just try to expand it out the way we did originally, but we could recognize here that, hey, I have an ( a + b ) times the ( a - b ), so that's going to be equal to our ( a^2 ).

So, what's ( 3y^2 )? Well, that's going to be ( 9y^4 ) minus our ( b^2 ). Well, what's ( 2y^5 ) squared? Well, ( 2^2 ) is ( 4 ), and ( y^5 ) squared is ( y^{5 \times 2} ) or ( y^{10} ).

And there's no further simplification that I could do here; I can't combine any like terms, and so we are done here as well.

More Articles

View All
Where the heck is Sadie? Sadie goes to Europe
[Music] You’re a falling star. You’re the getaway car. You’re the line in the sand when I go too far. You’re the swimming pool on a hot day, and you’re the perfect thing to say. And you play it coy, but it’s kind of cute. Oh, when you’re smiling at me, you
Summiting the World’s Most Dangerous Mountain | Podcast | Overheard at National Geographic
We’re high on a snowy mountain in Pakistan where a group of Nepalese climbers are struggling through harsh winds. It’s two o’clock in the evening. Think this is one of the hottest climbs we have ever met. [Music] That’s Ming Maggioja Sherpa. He goes by …
Steve Jobs on Failure
Now I’ve actually always found something to be very true, which is, um, most people don’t get those experiences because they never ask. Uh, I’ve never found anybody that didn’t want to help me if I asked them for help. I always call them up. I called up,…
Inside Notre Dame | The Story of God
[Music] Notre Dame [Music] More than 13 million people come here every year, yet only a fraction of them knows that these vaulted ceilings house one of the most precious and closely guarded relics in all Christendom: [Music] the Crown of Thorns. I’ve bee…
Can Our Universe Destroy Itself? #shorts
Can our universe destroy itself? Everything in the universe strives to be in the most stable state possible. For example, a ball on top of a hill is in an unstable state. When pushed, it will roll downhill, lose its potential energy, and end up in a stabl…
A day in the life of a PRODUCTIVITY NINJA🥷🏻📚⏰🥷🏻
Hi guys, it’s me Judy. I’m back with another vlog! You guys have been asking me, “What the hell are you doing if you’re taking a break from med school?” So I decided to answer your guys’s question and show what my typical day looks like. I’ve been doing …