yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Polynomial special products: difference of squares | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Earlier in our mathematical adventures, we had expanded things like ( x + y \times x - y ). Just as a bit of review, this is going to be equal to ( x \times x ), which is ( x^2 ), plus ( x \times \text{negative } y ), which is negative ( xy ), plus ( y \times x ), which is plus ( xy ), and then minus ( y \times y ) or you could say ( y \times \text{negative } y ), so it's going to be minus ( y^2 ). Negative ( xy ) plus ( xy ) means this is just going to simplify to ( x^2 - y^2 ).

This is all review; we covered it. When we thought about factoring things that are differences of squares, we thought about this when we were first learning to multiply binomials. What we're going to do now is essentially just do the same thing but do it with slightly more complicated expressions.

So, another way of expressing what we just did is we could also write something like ( a + b \times a - b ) is going to be equal to what? Well, it's going to be equal to ( a^2 - b^2 ). The only difference between what I did up here and what I did over here is instead of an ( x ), I wrote an ( a ); instead of a ( y ), I wrote a ( b ).

Given that, let's see if we can expand and then combine like terms. If I'm multiplying these two expressions, say I'm multiplying ( 3 + 5x^4 ) times ( 3 - 5x^4 ), pause this video and see if you can work this out.

All right, well, there's two ways to approach it. You could just approach it exactly the way that I approached it up here, but we already know that when we have this pattern where we have something plus something times that same original something minus the other something, well, that's going to be of the form of this thing squared minus this thing squared.

Remember, the only reason why I'm applying that is I have a ( 3 ) right over here and here. So the ( 3 ) is playing the role of the ( a ). So, let me write that down. That is our ( a ), and then the role of the ( b ) is being played by ( 5x^4 ), so that is our ( b ) right over there.

This is going to be equal to ( a^2 - b^2 ), but our ( a ) is ( 3 ), so it's going to be equal to ( 3^2 - ) and then our ( b ) is ( 5x^4 ) minus ( 5x^4 ) squared. Now, what does all of this simplify to? Well, this is going to be equal to ( 3^2 ), which is ( 9 ), and then minus ( 5x^4 ) squared.

Let’s see, ( 5^2 ) is ( 25 ), and then ( x^4 ) squared, well that is just going to be ( x^{4 \times 4} ), which is just ( x^8 ). Another way to think about it: our exponent properties say this is the same thing as ( 5^2 \times x^{4 , \text{squared}} ). If I raise them to an exponent and then raise that to another exponent, I multiply the exponents, and there you have it.

Let's do another example. Let's say that I were to ask you: what is ( 3y^2 + 2y^5 \times 3y^2 - 2y^5 )? Pause this video and see if you can work that out.

Well, we're going to do it the same way. You can, of course, always just try to expand it out the way we did originally, but we could recognize here that, hey, I have an ( a + b ) times the ( a - b ), so that's going to be equal to our ( a^2 ).

So, what's ( 3y^2 )? Well, that's going to be ( 9y^4 ) minus our ( b^2 ). Well, what's ( 2y^5 ) squared? Well, ( 2^2 ) is ( 4 ), and ( y^5 ) squared is ( y^{5 \times 2} ) or ( y^{10} ).

And there's no further simplification that I could do here; I can't combine any like terms, and so we are done here as well.

More Articles

View All
Force vs. time graphs | Impacts and linear momentum | Physics | Khan Academy
There’s a miniature rocket ship, and it’s full of tiny aliens that just got done investigating a new moon with lunar pools and all kinds of organic new life forms. But they’re done investigating, so they’re going to blast off and take their findings home …
What Dinosaurs ACTUALLY Looked Like?
The past is a vast and mysterious land that begins at the big bang and ends in the present, expanding with each passing moment. It is the home of everything that came before, the key to understanding our present. Here we find the most amazing creatures to…
Worked free response question on unemployment | APⓇ Macroeconomics | Khan Academy
We are told the following table shows labor market data for country X, and they tell us how many are employed, frictionally unemployed, structurally unemployed, cyclically unemployed, and also not in the labor force. So this first question here, and actu…
Multiplying 3-digit by 2-digit numbers: Error analysis | Grade 5 (TX TEKS) | Khan Academy
So we have a situation here where someone is attempting to multiply 586 * 43, and what we want to do together is figure out if they did this correctly or whether they made a mistake. And if they made a mistake, what step did they make a mistake on? Actual…
The Second Great Awakening - part 2
In the last video, I started discussing the Second Great Awakening, which was this era of increased religious fervor, religious conversion, and religiously inspired social action that happened in the early 19th century of the United States’ history. So ap…
Are We Running Out of Sand?
[Music] It can be easy to take something for granted that every time you see it, it seems to go on forever. It’s like an infinite path to the horizon, a landscape that never ends. This is sand. And even though just a simple trip to the beach can make it f…