yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
If You Haven’t Solved These You’re Not as Smart as You Think You Are
If you’re so smart, why aren’t you rich? If you’re so smart, why aren’t you happy, fit, or fulfilled? You see, Alexus, the only real IQ test is if you get what you want in life. If you haven’t solved these, you’re not as smart as you think you are. Welco…
How does a whip break the sound barrier? (Slow Motion Shockwave formation) - Smarter Every Day 207
(Whooshing) (Smacking) - What’s up, I’m Destin, this is Smarter Every Day. This is the tip of a bull whip and that crack you hear is this breaking the sound barrier. My question is why or how? Like, if you think about it, your arm’s never leaving your bod…
Fireside Chat with Tanay Tandon of Athelas
So I would love to welcome Tenae Tandon onto the stage. Uh, Tenae is the CEO and founder of Othellis, a digital health company that you’re going to be hearing all about. YC first met Tenae when he was 17 years old when he first won YC’s first hackathon. N…
How your image can MAKE or BREAK you
What’s up you guys, it’s Graham here. So, how important is your image? Now, we all hear that a book shouldn’t be judged by its cover, that we should get to know somebody first and give them a chance, but in reality, this rarely ever happens. Now, whether…
Ice Breakers - Ep. 1 | National Geographic Presents: IMPACT With Gal Gadot
GAL: “I want them to feel like they don’t have to conceal what they love or who they are to conform.” This is Kameryn’s wish for the girls she coaches as a figure skater and life role model, as she reminds them to always embrace their beauty, their joy, a…
Memories Make Us Who We Are | Breakthrough
Steve believes our identities are built on memory. [Music] When you think about memory, it is the thing that threads and unifies our overall sense of being. So, without it, we become stuck in time, right? And we lose our [Music] identity. But how reliab…