yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
Journey Inside Chernobyl’s Exclusion Zone | Short Film Showcase
When we first walked into that room, the first thing that we picked up was the sound of dripping water. You can see it first dripping from the ceiling; large puddles accumulated on the floor. There’s a sense of fear that comes from that because they tell …
Safari Live - Day 272 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon everybody and welcome to a stormy, blustery, windy Masai Mara. We’ve had a massive storm that has just blown…
Ray Dalio On The Biggest Failure of His Career
So you had this huge failure after being wildly successful very early on in your life. You had to borrow $4,000 from your parents, and he started to reflect on this, and he came up with this very interesting principle: pain plus reflection is equal to pro…
Desining from Day One: Artists as Founders: Multiverse (S20) - YC Gaming Tech Talks 2020
Um, so we’re Multiverse. We did YC W20, so that was from like January to March of this year, just before Corona hit. Um, so, you know, Multiverse, we’re making next generation tabletop RPGs. You can think of us like a mix between D&D and Roblox. We wa…
THE FED JUST FLIPPED THE MARKET | Urgent Changes Explained
What’s up, Graham? It’s guys here! So, you know the saying that riches are made in recessions? Well, even though housing data fell to its lowest level ever, tech layoffs are getting more and more common, and the price for oil keeps going higher. Brand ne…
How To Get Rich According To Tim Ferriss
There are a million ways to make a million dollars, and this is how Tim Ferriss did it. Tim Ferriss is someone we routinely follow because he’s always doing something interesting or has something smart to say. Ferriss is a successful author, entrepreneur,…