yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
See Inside Russia's Famed Mariinsky Ballet Theatre | National Geographic
Russians seem to be very good at taking something and bringing it to a whole new level. Take ballet, for example; it was invented in Italy, popularized in France, but the ballet we know now would not be here if it weren’t for the Russians. The heart of b…
Comparing multi digit numbers word problems
Two baseball teams are comparing the number of fans who attended their most recent games. The attendance at the Stanleyville Sliders game was 12,896 fans. The attendance at the Benson Bats game was 12,991 fans. Which team had more fans at their game? Pau…
How To Use The 2023 Recession To Get Rich
What’s up guys? It’s Grammy here! So, this is potentially going to be a once-in-a-generation opportunity to build wealth. Because now, it could be one of the easiest times to increase your net worth dramatically if you know what you’re doing. After all, t…
Measuring area with tiled square units
What we’re going to do in this video is look at two rectangles that have the exact same area, and we’re going to measure each of them with a different square unit. So, this top unit right over here, this is a square foot. That means its height is one foo…
Parallel Worlds Probably Exist. Here’s Why
A portion of this video was sponsored by Norton 360. Classical mechanics is great. If you know the state of a system, say the position and velocity of a particle, then you can use an equation, Newton’s second law, to calculate what that particle will do i…
The Biggest Mistakes First-Time Founders Make - Michael Seibel
Here are some of the biggest mistakes first-time founders make when starting their company and in the first year afterwards. First, I often see founders choosing to solve a problem that they actually don’t care about. Well, this mistake isn’t fatal, and …