yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
Beta decay | Physics | Khan Academy
Did you know that paper industries can use radioactivity to ensure consistent thickness throughout the paper? That’s right! But doesn’t it make you wonder how do you use radioactivity to do that? Well, let’s find out. If you have a very heavy nucleus, th…
Rare Ghost Orchid Has Multiple Pollinators | Short Film Showcase
The swamp itself is steeped in mystery, holding a wildness that is so increasingly rare in modern life. There’s this very like ghost-like thing dancing off the edge of a tree; it just deepens the mystery. It deepens the power of those places. There’s just…
Two Classes of Bitcoin? | Kitco NEWS
Joining me now is serial entrepreneur, Shark Tank star, and chairman of O shares ETFs, the one and only Kevin O’Leary, Mr. Wonderful. Wonderful to have you back with us! Great to be here. Thank you so much! All right, so Kevin, Jamie Dimon is saying tha…
YC Alumni Lightning Round
All right, guys. We uh, we got a break coming up but just a few words in closing, okay? Before we hear from some amazing alumni and then head to our um, happy hour on the roof. Today, we were lucky enough to hear from some of the very best VCs in the val…
What Makes Sugar-Free Gum Sweet? | Ingredients With George Zaidan (Episode 11)
Takes a lot more than just sugar to make gum sweet, so can I make my own gum sweetener from scratch without sugar? Hit the stuff inside your stuff. Ingredients; the ingredients in this popular gum are, and the ones responsible for flavor are. Now let’s d…
The Reality You're In, And The Reality In You
Close your left eye and stare at the X with your right eye. Now don’t look away. Move your phone closer, maybe further away, until my head appears to vanish. You have just found your blind spot: the place on your retina where nerves pass through on their …