yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
Steve Jobs: How a Dreamer Changed the World
We are delivering today the iPad, the new iMac, the iPod, ioto, MacBook Air, iTunes. It’s a revolutionary. He was one of the most creative and daring CEOs, a global icon who shaped the worlds of technology and media for over 30 years. Computers, music, mo…
Brexit and European Union primer
Given all of the recent talk about the United Kingdom deciding to leave the European Union, often referred to as Brexit (short for British exit from the European Union), I thought it would be interesting to do a primer on, well, what exactly is the Europe…
Relating number lines to fraction bars
We are asked what fraction is located at point A on the number line, and we can see point A right there. Pause this video and see if you can answer that. All right, now there’s a bunch of ways that you could think about it. You could see that the space b…
Rulings on majority and minority rights by the Supreme Court | Khan Academy
We’ve already talked about the 14th Amendment in previous videos, but just as a reminder, Section 1 of the 14th Amendment says, “All persons born or naturalized in the United States, and subject to the jurisdiction thereof, are citizens of the United Stat…
Ray Dalio’s Best Advice for Young Entrepreneurs
You’re a role model for so many young people who want to be like you. They’re thinking by being like you means extraordinarily rich, but they’re not looking at these deeper questions. What would you say to all these young entrepreneurs who are, you know, …
The Ponzi Factor: Proof by Definition
I talked with the author who has written a book so dangerous if this information becomes mainstream it alters the entire engine of our economy. Tong Lu has revealed just how our stock market is the dictionary definition of a Ponzi scheme. Here’s my conver…