yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
Limits of trigonometric functions | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is think about limits involving trigonometric functions. So, let’s just start with a fairly straightforward one. Let’s find the limit as X approaches Pi of sine of x. Pause the video and see if you can figure this out…
Solving exponential equations using exponent properties | High School Math | Khan Academy
Let’s get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1). So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Any…
How Governments and Banks Keep You Poor
You’ve just graduated college and worked your first month at your new job. You’ve worked extremely hard to get this position, and getting that first paycheck feels like such a triumphant moment. The possibilities of what you can do with your income are ex…
DoorDash at YC Summer 2013 Demo Day
Hi, we’re DoorDash, and we enable every restaurant to deliver for customers. We offer restaurant food delivery in under 45 minutes, and for restaurant owners, we provide our own drivers and manage the logistics of delivery. Now, you might think that food…
Interpreting y-intercept in regression model | AP Statistics | Khan Academy
Adriana gathered data on different schools’ winning percentages and the average yearly salary of their head coaches in millions of dollars in the years 2000 to 2011. She then created the following scatter plot and trend line. So this is salary in million…
The fastest way to ruin your entire life
Here’s another quick tutorial on how to ruin the rest of your life. Step one: Close your body language. Go throughout life with a closed body language. Slouch your shoulders, keep your head down, don’t make eye contact. Don’t give anybody the impression …