yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with trig (limit undefined) | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what the limit of ( x^2 + 1 ) over ( \sin(x) ) is as ( x ) approaches infinity.

So let's just think about what's going on in the numerator and then think about what's going on in the denominator. In the numerator, we have ( x^2 + 1 ). As ( x ) gets larger and larger and larger, as it approaches infinity, we're just squaring it here. So this numerator is going to get even bigger and approach infinity even faster. Thus, this thing is going to go to infinity as ( x ) approaches infinity.

Now what's happening to the denominator here? Well, ( \sin(x) ) – we've seen this before. ( \sin(x) ) and ( \cos(x) ) are bounded. They oscillate between negative 1 and 1. So, negative 1 is going to be less than or equal to ( \sin(x) ), which will be less than or equal to 1. Therefore, this denominator is going to oscillate.

So what does that tell us? Well, we might be tempted to say that the numerator is unbounded and goes to infinity, and then the denominator is just oscillating between these values here. So maybe the whole thing goes to infinity. But we have to be careful because one, this denominator is going between positive and negative values.

So, the numerator is just going to get more and more positive, but we're being divided sometimes by positive values and sometimes by a negative value. We're going to jump between positive and negative, positive and negative.

Then you also have all these crazy asymptotes here. Every time ( x ), every time ( \sin(x) ) becomes zero, well then you're going to have a vertical asymptote. This thing will not be defined. So you're going to have all these vertical asymptotes. You're going to oscillate between positive and negative and just larger and larger values.

And so this limit does not exist. Does not exist. Does not exist.

We can see that graphically. We've described it in words just inspecting this expression, but we can see it graphically. If we actually look at a graph of this, which I have right here, you can see that as ( x ) goes towards positive infinity, depending on which ( x ) we are, we're kind of going up. We get really large, then we hit a vertical asymptote, and we jump back down to a really negative value. Then another vertical asymptote, up, down, up, down, up, down.

It just is the oscillations that get more and more extreme, but we keep having these vertical asymptotes on a periodic basis. So it's very clear that this limit does not exist.

More Articles

View All
Thought Experiments No One Can Solve
What if I told you that you died last night in your sleep and that your body and mind have been replaced by an exact replica of you, a clone who has all the same characteristics and memories that you had? Impossible, you’d probably reply. But can you prov…
Carrot Sharpener. LÜT #27
Why would anybody peel a carrot when they could use an oversized pencil sharpener built just for them? And the same goes for cigarette…pencils. It’s episode 27 of LÜT. For pencils that are more musical, grab yourself a pair of drumstick pencils. And Davi…
Simple model to understand r and g relationship
What I want to do in this video is to create a simple spreadsheet to help us understand why, if R is greater than G, why that might lead to more and more of national income going to the owners of capital as opposed to labor. So, let’s just say R is 3%. W…
How I saved over $300,000 in 2017 - How to Save Money 101 (Five Steps)
What’s up, you guys? It’s Graham here. So, you know, it’s better than making and spending a ton of money; it’s saving and investing a ton of money. And no, I’m not talking about anything crazy like extreme couponing or dumpster diving. We’re going to Cos…
The Lost City of Chan Chan | Lost Cities with Albert Lin
I’m headed to the lost city of Chanchan, once the beating heart of the mighty Chimu Empire. Is that a pyramid? I think that’s a pyramid, a pyramid at Chanchan. Can I find answers inside the city walls as to why the children had to die? Built over a thousa…
The Loner's Path | Philosophy for Non-Conformists
The Loner’s Path | Philosophy for Non-conformists The path of nonconformity is alluring to those who don’t seek to follow the herd known as a society. Instead, they want to make unique individual choices in life, disregarding other people’s opinions and …