yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Constructing exponential models: percent change | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

Cheppy is an ecologist who studies the change in the narwhal population of the Arctic Ocean over time. She observed that the population loses 5.6% of its size every 2.8 months. The population of narwhals can be modeled by a function n, which depends on the amount of time t in months. When Cheppy began the study, she observed that there were 89,000 narwhals in the Arctic Ocean.

Write a function that models the population of narwhals t months since the beginning of Cheppy's study. Like always, pause the video and see if you can do it on your own before we work through it together.

So now let's work through it together. To get my sense of what this function needs to do, it's always valuable to create a table for some interesting inputs for the function and see how the function should behave.

First of all, if t is in months and n of t is the number of narwhals, what happens when t is equal to zero? Well, we know at t equals zero there are 89,000 narwhals in the ocean, so 89,000.

Now, what's another interesting one? We know that the population decreases 5.6% every 2.8 months. Let's think about when t is 2.8 months. The population should have gone down 5.6%.

Going down 5.6% is the same thing as retaining what? What’s one minus 5.6? Retaining 94.4%. Let me be clear: if you lose 5.6%, you are going to be left with 94.4% of the population.

Another way of saying this sentence—that the population loses 5.6% of its size every 2.8 months—is to say that the population is 94.4% of its size every 2.8 months, or shrinks to 94.4% of its original size every 2.8 months.

So, after 2.8 months, the population should be 89,000 times 94.4%, or we could write that as 89,000 times 0.944. Now, if we go another 2.8 months, two times 2.8—obviously, I could just write that as 5.6 months—but let me just write this as 2.8 months again.

Where are we going to be? We're going to be at 89,000 times 0.944 (this is where we were before at the beginning of this period), and we're going to multiply by 94.4% again, or 0.944 again, or we can just say times 0.944 squared.

After three of these periods, we'll be at 89,000 times 0.944 squared times 0.944, which is going to be 0.944 to the third power. I think you might see what's going on here. We have an exponential function.

Between every 2.8 months, we are multiplying by this common ratio of 0.944. Therefore, we can write our function n of t. Our initial value is 89,000 times 0.944 to the power of however many of these 2.8-month periods we've gone through.

If we take the number of months and we divide by 2.8, that tells us how many 2.8-month periods we have gone through. Notice that when t equals zero, all of this turns into one; you raise something to the zeroth power, and it just becomes one. We have 89,000.

When t is equal to 2.8, this exponent is one, and we're going to multiply by 0.944 once. When t is 5.6, the exponent is going to be 2, and we're going to multiply by 0.944 twice.

I'm just doing the values that make the exponent integers, but it's going to work for the ones in between. I encourage you to graph it or to try those values on a calculator if you like. But there you have it, we're done; we have modeled our narwhals.

So, let me just underline that—we're done!

More Articles

View All
Brand New Key - Briley the One Girl Band
All right, you’re on. Hey, I ride my bicycle fast through the wind. Last night, I rolled SK to your door at daylight. It almost seems like you’re avoiding me. I’m okay alone, but you
Simulation showing value of t statistic | Confidence intervals | AP Statistics | Khan Academy
In a previous video, we talked about trying to estimate a population mean with a sample mean and then constructing a confidence interval about that sample mean. We talked about different scenarios where we could use a z table plus the true population stan…
So Much Change, So Little Time | Sea of Hope: America's Underwater Treasures
We are just beginning to understand that loss of grouper and parrot fish has a domino effect, and kills the reef. It’s happening so fast; it doesn’t take an old-timer to remember the good old days. In just my short lifetime of 19 years, I’ve been able to …
Warren Buffett: Why Gold is a Bad Investment
Okay, so it’s no secret that the United States, and frankly, the entire world is experiencing high levels of inflation that most countries around the world haven’t experienced in decades. You’re probably seeing this inflation, which refers to things that …
10 TIPS TO REACH THE ULTIMATE HAPPINESS LEVEL | Marcus Aurelius | STOICISM
10 TIPS TO REACH THE ULTIMATE HAPPINESS LEVEL | Marcus Aurelius What made Marcus Aurelius so exceptional? He was one of the five noble emperors who truly cared for their people. He was also a loyal student of Stoic philosophy and found time to write a se…
When You Miss Someone (An ex, a friend, a family member)
Most of us have been in a position in which we had to say goodbye to someone dear to us. This could be because of the cycle of life and death. But this could also be because of a breakup or being separated from friends by moving to another country. When w…