yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What’s in the air you breathe? - Amy Hrdina and Jesse Kroll


3m read
·Nov 8, 2024

Take a deep breath. In that single intake of air, your lungs swelled with roughly 25 sextillion molecules, ranging from compounds produced days ago to those formed billions of years in the past. In fact, many of the molecules you’re breathing were likely exhaled by members of ancient civilizations and innumerable humans since.

But what exactly are we all breathing? Roughly 78% of Earth’s atmosphere is composed of nitrogen generated by volcanic activity deep beneath the planet’s crust. The next major ingredient is oxygen, accounting for 21% of Earth’s air. While oxygen molecules have been around as long as Earth’s oceans, oxygen gas didn’t appear until ocean dwelling microorganisms evolved to produce it.

Finally, .93% of our air is argon, a molecule formed from the radioactive decay of potassium in Earth’s atmosphere, crust, and core. Together, all these dry gases make up 99.93% of each breath you take. Depending on when and where you are, the air may also contain some water vapor. But even more variable is that remaining .07%, which contains a world of possibilities.

This small slice of air is composed of numerous small particles including pollen, fungal spores, and liquid droplets, alongside trace gases like methane and carbon dioxide. The specific cocktail of natural and man-made compounds changes dramatically from place to place. But no matter where you are, .07% of every breath you take likely contains man-made pollutants—potentially including toxic compounds that can cause lung disease, cancer, and even DNA damage.

There’s a wide variety of known pollutants, but they all fall into two categories. The first are primary pollutants. These toxic compounds are directly emitted from a man-made or naturally occurring source. However, they don't always come from the places you'd expect. Some large factories mostly generate water vapor, with only small quantities of pollutants mixed in. Conversely, burning wood or dung can create polycyclic aromatic hydrocarbons; dangerous compounds that have been linked to several types of cancer, as well as long-term DNA damage.

In all cases, pollutants interact with regional weather patterns and topography, which can keep compounds local or spread them kilometers away. When these molecules travel through the air, a transformation occurs. Natural compounds called oxidants, formed by oxygen and sunlight, break down the pollutants. Sometimes, these reactions make pollutants more easily washed out by rain. But in other cases, they result in even more toxic secondary pollutants.

For example, when factories burn coal, they release high concentrations of sulfur oxides. These molecules oxidize to form sulfates, which condense with water vapor in the air to form a blanket of fine particles that impair visibility and cause severe lung damage. This so-called sulfurous smog was well-known in 20th century London and continues to plague cities like Beijing.

Since the advent of cars, another secondary pollutant has taken center stage. Exhaust from fossil fuel-burning vehicles releases nitrogen oxides and hydrocarbons which react to form ozone. And while some ozone in the upper atmosphere helps shield us from ultraviolet rays, on the ground, this gas can form alongside secondary particles and create photochemical smog.

This brown fog can be found covering densely packed cities, making seeing difficult and breathing hazardous. It also contributes to climate change by trapping heat in the atmosphere. In recent decades, industrial activity has contributed to a huge spike in various trace gas emissions, fundamentally changing the air we all breathe.

Many places have already responded with countermeasures. Most cars produced since the 1980s are equipped with catalytic converters that reduce the emission of carbon monoxide and nitrogen oxides. And today, places like Beijing are battling smog by electrifying their energy infrastructure and limiting automobile emissions altogether.

But while moving away from fossil fuels is essential, there's no universal remedy for air pollution. Different regions need to respond with unique regulations that account for their local pollutants. Because no matter where you live, we all share the same air.

More Articles

View All
10 TRUTHS YOU NEED TO ACCEPT ABOUT PEOPLE | STOICISM INSIGHTS
Every day, we encounter a sea of faces, each with a narrative that could fill volumes, but despite our close proximity, true comprehension of those around us is frequently just out of reach. What if I told you that behind the diverse manifestations of eve…
The End Of Credit Cards | A Warning To Credit Users
What’s up, guys? It’s Graham here. So, as many of you know, I take my credit card usage very seriously. And I say the term “usage” because when I tell people I have a hobby collecting credit cards, they look at me as though I’ve gone crazy and have a pro…
Even and odd functions: Equations | Transformations of functions | Algebra 2 | Khan Academy
We are asked: Are the following functions even, odd, or neither? So pause this video and try to work that out on your own before we work through it together. All right, now let’s just remind ourselves of a definition for even and odd functions. One way t…
Volume of pyramids intuition | Solid geometry | High school geometry | Khan Academy
In this video, we’re going to talk about the volume of a pyramid. Many of you might already be familiar with the formula for the volume of a pyramid, but the goal of this video is to give us an intuition or to get us some arguments as to why that is the f…
Donating a Kidney to a Stranger | National Geographic
You’re donating your kidney to– A stranger. Right. [MUSIC PLAYING] I think the coolest part about donating a kidney to a stranger is I may have absolutely nothing in common with my recipient. Organ transplants cross racial divides, social divides, politic…
Journey Inside Chernobyl’s Exclusion Zone | Short Film Showcase
When we first walked into that room, the first thing that we picked up was the sound of dripping water. You can see it first dripping from the ceiling; large puddles accumulated on the floor. There’s a sense of fear that comes from that because they tell …