yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to real gases | Intermolecular forces and properties | AP Chemistry | Khan Academy


2m read
·Nov 10, 2024

In several other videos, we have talked about the ideal gas law, which tells us that pressure times volume is going to be equal to the number of moles times the ideal gas constant times the temperature measured in Kelvin. Now, in all of our studies of the ideal gas law, we assumed that the gases that we were dealing with were ideal.

Now we're going to think a little bit about what it means to be ideal and how real gases vary from actual ideal gases. Well, in order for us to assume that a gas is ideal, we assume that its volume, the volume that the gas takes up, is negligible relative to the container.

The other thing we assume is that the molecules of the gas don't interact with each other; molecules don't interact. Now, in the real world, we know that all molecules take up some volume, but it could be a reasonable assumption if we're talking about a really huge container and we don't have that high density of molecules in it. It's a reasonable assumption that the volume of the gas itself, that the molecules themselves, are small in volume collectively relative to the container.

It's reasonable in many circumstances to assume that the molecules don't interact. Maybe they don't have strong intermolecular forces. Once again, because they're taking up a small portion of the volume, they might even not get close to each other too often. That's why these are reasonable assumptions, and they allow us to say that PV is equal to nRT, which is a valuable approximation in most circumstances.

But in the real world, we do know that in actuality, the volume that each molecule takes up is some volume, and if you add up all the molecules together, they're, of course, going to take up some volume. If there's enough molecules or if the container is small enough, we know that the volume of the gas relative to the container won't be negligible.

We also know that molecules will interact with each other in some way, shape, or form. Two molecules can't occupy the same space at the same time, so you definitely have some repulsive forces, and you might have, even for fairly inert molecules, some temporary dipoles that get formed—some temporary attraction or some temporary repulsion.

So, if you're dealing with a situation where things are less ideal, and I'm going to make a characterization of it where the molecules are taking up a significant volume relative to the container, you can't say that the volume of the molecules is negligible relative to the container.

We assume that they are interacting with each other. They’re definitely going to repulse each other; they can't occupy the same space at the same time. But they might attract each other at some points or repulse each other at other points. In this situation, where we can't make these assumptions, we're going to have to modify the ideal gas law.

More Articles

View All
Bond enthalpy and enthalpy of reaction | Chemistry | Khan Academy
We’re going to be talking about bond enthalpy and how you can use it to calculate the enthalpy of reaction. Bond enthalpy is the energy that it takes to break one mole of a bond. So, one mole of a bond. Different types of bonds will have different bond en…
Return on capital and economic growth
One of the core ideas of “Capital in the 21st Century” is comparing the after-tax return on capital, let me write that a little bit neater: return on capital, to economic growth. The contention is that if the return on capital ® is greater than economic g…
Trig limit using pythagorean identity | Limits and continuity | AP Calculus AB | Khan Academy
Let’s see if we can find the limit as theta approaches 0 of ( \frac{1 - \cos(\theta)}{2 \sin^2(\theta)} ). And like always, pause the video and see if you could work through this. Alright, well our first temptation is to say, well, this is going to be th…
Zeros of polynomials: matching equation to zeros | Polynomial graphs | Algebra 2 | Khan Academy
A polynomial P has zeros when X is equal to negative four, X is equal to three, and X is equal to one-eighth. What could be the equation of P? So pause this video and think about it on your own before we work through it together. All right. So the fact …
5 Brutal Truths Men Need to Accept to Live Their Best Lives
Mr. Wonderful here. In this video, I’m going to share the brutal truths you need to accept to live your best life. Number one: your appearance. How you look, how other people see you. You should start worrying about your appearance when you’re in your ea…
Desire Is a Contract You Make to Be Unhappy
Desire is a contract you make with yourself to be unhappy until you get what you want. You start becoming disturbed because you want something, and then you work really hard to get that thing. You’re miserable in the meantime, and then when you get that t…