yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Information for congruency


2m read
·Nov 10, 2024

So, I have two triangles depicted here and we have some information about each of those triangles. We know that this side of this left triangle has length eight. We know that this side has length seven, and then we know that this angle is 50 degrees.

On this triangle, we see some things that look a bit a little bit familiar. This triangle, this side has length eight. This side has length seven, and this angle right over here has a measure of 50 degrees.

So, my question to you is: Can you definitively say, not assuming that these are drawn to scale because they actually aren't, can you definitively say that these triangles are congruent? Or could you definitively say that they aren't congruent? Or can you not say either? Would you have to say that there's not enough information?

Pause this video and think about that.

So essentially, what we have here are two pairs of sides that have the same length and an angle, but that angle is not between those two sides. If the angle were here and here, then we could use side angle side or side angle side to deduce that, hey, these are congruent. But that's not what we're dealing with; we are dealing with side side angle versus side side angle.

I'm saying the side and the side before the angle because otherwise, if I don't do that, it becomes a little bit crass. So, we're really saying a side side angle is not sufficient to prove congruency.

The reason why it's not is that you can actually construct different triangles with the same constraints. For example, on this rightmost triangle, it could look like this, or it could look like this. The seven side could go down like this and intersect just like that.

Now, you might be saying, "Hey, that's not what it looks like." It looks very similar, but remember we're not going on looks; we have to go based on the information they've given us.

So, you could just as easily, based on the information and the constraints they've given us, have a triangle like this. The very fact that you can create two different triangles that are clearly not congruent based on the exact same information and the exact same constraints tells you that that information, those constraints, are not enough to tell you that these are congruent triangles.

More Articles

View All
Satya Nadella on the journey to becoming Microsoft's CEO & reimagining technology's impact
YOUR TIME, AND WE’LL SEE YOU YOUR TIME, AND WE’LL SEE YOU NEXT TIME. NEXT TIME.
The Apple Vision Pro is Terrifying for Humanity's Future
I hate being bored, don’t you? My mind starts to wander. I stress about work, friends, and what I’ll be doing with my life in 5, 10, 20 years. I feel fidgety and uncomfortable. A study by the National Institute of Health showed that boredom can disrupt mo…
Division with partial quotients example
Let’s say we want to figure out what 473 divided by 5 is, and like always, why don’t you pause this video and try to work through it? If you’re familiar with the idea of division with partial quotients, I encourage you to try it out that way. All right, …
Space Mountain Fears - Smarter Every Day 12
Intro music Hey. It’s Disney World, and it’s magic hours, which means nobody is here, so we get to ride everything. But we’ve always had this fear of Space Mountain; that if you put your arms up, you’ll get ‘em chopped off. So we got this trick we do, sh…
Svalbard - The Northernmost Town on Earth
Come take a walk with me, around Longyearbyen. That’s the largest town on the Norwegian islands of Svalbard. Parts of it may look familiar. But make no mistake, this place IS different. At 78° north, it is just 1800mi/1300km from the North Pole. And with …
Example visually evaluating discrete functions
What we have here is a visual depiction of a function, and this is a depiction of y is equal to h of x. Now, when a lot of people see function notation like this, they can see it as somewhat intimidating until you realize what it’s saying. All a function …