yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Information for congruency


2m read
·Nov 10, 2024

So, I have two triangles depicted here and we have some information about each of those triangles. We know that this side of this left triangle has length eight. We know that this side has length seven, and then we know that this angle is 50 degrees.

On this triangle, we see some things that look a bit a little bit familiar. This triangle, this side has length eight. This side has length seven, and this angle right over here has a measure of 50 degrees.

So, my question to you is: Can you definitively say, not assuming that these are drawn to scale because they actually aren't, can you definitively say that these triangles are congruent? Or could you definitively say that they aren't congruent? Or can you not say either? Would you have to say that there's not enough information?

Pause this video and think about that.

So essentially, what we have here are two pairs of sides that have the same length and an angle, but that angle is not between those two sides. If the angle were here and here, then we could use side angle side or side angle side to deduce that, hey, these are congruent. But that's not what we're dealing with; we are dealing with side side angle versus side side angle.

I'm saying the side and the side before the angle because otherwise, if I don't do that, it becomes a little bit crass. So, we're really saying a side side angle is not sufficient to prove congruency.

The reason why it's not is that you can actually construct different triangles with the same constraints. For example, on this rightmost triangle, it could look like this, or it could look like this. The seven side could go down like this and intersect just like that.

Now, you might be saying, "Hey, that's not what it looks like." It looks very similar, but remember we're not going on looks; we have to go based on the information they've given us.

So, you could just as easily, based on the information and the constraints they've given us, have a triangle like this. The very fact that you can create two different triangles that are clearly not congruent based on the exact same information and the exact same constraints tells you that that information, those constraints, are not enough to tell you that these are congruent triangles.

More Articles

View All
Hello again and welcome to Up All Night! I’m a knight, I’m a horse, neigh! Last week on the show, we covered a bunch of great ways to prank. Now, today I’m gonna do the same thing all over again because I have no imagination. It’s opposite day! We begin…
Stunning Photos of Sacred Water Around the World | Nat Geo Live
We went to Mexico to look at the sacred Cenotes in the Yucatan. They used to be spiritual places for the Mayans. Today we come and we seek peace and relaxation and meditation. This is a Russian Orthodox community on Epiphany day. Now, you’re probably gon…
How to NOT be LAZY anymore - The LAZINESS CURE
[Music] Let me ask you something. Do you come home from work just to sit on the couch and watch TV, or browse dank memes on your iPad? Maybe a friend will text you wanting to go out later, and you respond pretty exhausted, “Just gonna take it easy tonigh…
What's it Like to Play Football in Space? | StarTalk
A lot of different venues in space where you can transplant sport. Often when people think in space, they think in a weightless environment, but that’s not realistic. What’s more realistic is playing a sport, say football, on the surface of another planet…
Differentiability at a point: graphical | Derivatives introduction | AP Calculus AB | Khan Academy
The graph of function f is given below. It has a vertical tangent at the point (3, 0). So (3, 0) has a vertical tangent. Let me draw that. So it has a vertical tangent right over there and a horizontal tangent at the point (0, -3). (0, -3) has a horizonta…
Change in period and frequency from change in angular velocity: Worked examples | Khan Academy
We’re told that a large tire spins with angular velocity (4 \Omega). A smaller tire spins with half the angular velocity. I’m assuming half the angular velocity of the large tire. How does the period (T{\text{large}}) of the large tire compare with the pe…