yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Information for congruency


2m read
·Nov 10, 2024

So, I have two triangles depicted here and we have some information about each of those triangles. We know that this side of this left triangle has length eight. We know that this side has length seven, and then we know that this angle is 50 degrees.

On this triangle, we see some things that look a bit a little bit familiar. This triangle, this side has length eight. This side has length seven, and this angle right over here has a measure of 50 degrees.

So, my question to you is: Can you definitively say, not assuming that these are drawn to scale because they actually aren't, can you definitively say that these triangles are congruent? Or could you definitively say that they aren't congruent? Or can you not say either? Would you have to say that there's not enough information?

Pause this video and think about that.

So essentially, what we have here are two pairs of sides that have the same length and an angle, but that angle is not between those two sides. If the angle were here and here, then we could use side angle side or side angle side to deduce that, hey, these are congruent. But that's not what we're dealing with; we are dealing with side side angle versus side side angle.

I'm saying the side and the side before the angle because otherwise, if I don't do that, it becomes a little bit crass. So, we're really saying a side side angle is not sufficient to prove congruency.

The reason why it's not is that you can actually construct different triangles with the same constraints. For example, on this rightmost triangle, it could look like this, or it could look like this. The seven side could go down like this and intersect just like that.

Now, you might be saying, "Hey, that's not what it looks like." It looks very similar, but remember we're not going on looks; we have to go based on the information they've given us.

So, you could just as easily, based on the information and the constraints they've given us, have a triangle like this. The very fact that you can create two different triangles that are clearly not congruent based on the exact same information and the exact same constraints tells you that that information, those constraints, are not enough to tell you that these are congruent triangles.

More Articles

View All
Rare 1920s Footage: All-Black Towns Living the American Dream | National Geographic
And Oklahoma is a unique space in terms of the number of African-American towns that were established. Some suggest upwards of 50 African-American towns between 1924 and 1928. Reverend S.S. Jones was going around documenting this sort of self-determined, …
15 Signs You’re Pre-Rich
Some of you aren’t broke, right? You’re just on the way to becoming rich. Let’s call you pre-rich. Your time hasn’t come yet, but you might share some of these early signs that one day, probably soon, your reality will match your potential. Here are 15 si…
It’s Over: The Housing Bubble Just Popped
Hey guys! So really quick, I want to address a previous controversy. In a previous video, I tore up this hundred dollar bill to illustrate how the FED removes money from the economy. I understand that this was upsetting to some viewers, but rest assured n…
Jason Silva on Science, Adventure and Exploration | Brain Games
[Music] What does it mean to explore? What does it mean to adventure? Walker Percy wrote, “The search is what anyone would undertake if he were not sunk in the everydayness of his own life.” To be aware of the possibility of the search is to be on to some…
Path independence for line integrals | Multivariable Calculus | Khan Academy
What I want to do in this video is establish a reasonably powerful condition in which we can establish that a vector field or that a line integral of a vector field is path independent. When I say that, I mean that let’s say I were to take this line inte…
Khan Academy Ed Talks with Dan Willingham, PhD - Wednesday, April 21
Hello and welcome to ED Talks with Khan Academy where we talk to influential people in the field of education. I am excited today to talk with Dr. Dan Willingham. Before we get started with that, I want to remind all of you that Khan Academy is a non-prof…