yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying quotient of powers (rational exponents) | Algebra I | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we have an interesting equation here, and let's see if we can solve for K. We're going to assume that m is greater than zero, like always. Pause the video, try it out on your own, and then I will do it with you.

All right, let's work on this a little bit. You could imagine that the key to this is to simplify it using our knowledge of exponent properties. There's a couple of ways to think about it. First, we can look at this rational expression here: m to the 7/9 power divided by m to the 1/3 power.

And the key realization here is that if I have x to the a over x to the b, that this is going to be equal to x to the a minus b power. It actually comes straight out of the notion that x to the a over x to the b is the same thing as x to the a times 1/x to the b, which is the same thing as x to the a times 1/x to the b.

That's the same thing as x to the b, which is going to be the same thing as if I have a base to one exponent times the same base to another exponent. That's the same thing as that base to the sum of the exponents a plus b, which is just going to be a minus b. So we got to the same place.

So we can rewrite this as... So we can rewrite this part as being equal to m to the 7/9 power minus 1/3 power is equal to m to the K/9. And I think you see where this is going. What is 7/9 minus 1/3? Well, 1/3 is the same thing, if we want to have a common denominator, as 3/9.

So I can rewrite this as 3/9. So 7/9 minus 3/9 is going to be 4/9. So this is the same thing as m to the 4/9 power is going to be equal to m to the K/9.

So 4/9 must be the same thing as K/9. So we can say 4/9 is equal to K/9, which tells us that K must be equal to 4, and we're all done.

More Articles

View All
How To Become A Millionaire: Index Fund Investing For Beginners
What’s up you guys, it’s Graham here. So let’s cover one of my favorite ways to invest ever, besides real estate. I would even go so far as to say that this is the best, safest, and easiest long-term investment strategy out there for most people. Also, th…
Mr. Freeman, part 61 CENSORED
There was a man who was constantly suffering. He was too hot, then too cold. He had too much, then too little. He wanted to scream from joy, then wanted to hide in the corner from angst. The stress was making his heart grow callous, his body deteriorate, …
NERD WARS: Iron Man vs Master Chief: Who Would Win? -- Wackygamer
Iron Man vs. Master Chief special request from I heat voices 94. If you have your own requests, stick them in the comments. Iron Man hands down the winner. You, Rosalie, your Master Chief? AHA! Is part of an army. Iron Man works all by himself. Master Ch…
AK-47 vs Prince Rupert's Drop (at 223,000 FPS) - Smarter Every Day 170
Hey, it’s me Destin, welcome back to Smarter Every Day! I’ve been waiting on a sunny day to do this. You remember the last video I fired a .38 special versus a Prince Rupert’s drop, and the Prince Rupert’s drop won. Well, we’re going to fix that today. W…
Identifying centripetal force for cars and satellites | AP Physics 1 | Khan Academy
So here we have something that you probably have done in the last, maybe in the last day. If we’re in a car and we’re just making a turn, let’s say at a constant speed on a road that is flat, so it’s not a banked racetrack or anything like that, what is k…
Theoretical probability distribution example: multiplication | Probability & combinatorics
We’re told that Kai goes to a restaurant that advertises a promotion saying one in five customers get a free dessert. Suppose Kai goes to the restaurant twice in a given week, and each time he has a one-fifth probability of getting a free dessert. Let X r…