yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying quotient of powers (rational exponents) | Algebra I | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we have an interesting equation here, and let's see if we can solve for K. We're going to assume that m is greater than zero, like always. Pause the video, try it out on your own, and then I will do it with you.

All right, let's work on this a little bit. You could imagine that the key to this is to simplify it using our knowledge of exponent properties. There's a couple of ways to think about it. First, we can look at this rational expression here: m to the 7/9 power divided by m to the 1/3 power.

And the key realization here is that if I have x to the a over x to the b, that this is going to be equal to x to the a minus b power. It actually comes straight out of the notion that x to the a over x to the b is the same thing as x to the a times 1/x to the b, which is the same thing as x to the a times 1/x to the b.

That's the same thing as x to the b, which is going to be the same thing as if I have a base to one exponent times the same base to another exponent. That's the same thing as that base to the sum of the exponents a plus b, which is just going to be a minus b. So we got to the same place.

So we can rewrite this as... So we can rewrite this part as being equal to m to the 7/9 power minus 1/3 power is equal to m to the K/9. And I think you see where this is going. What is 7/9 minus 1/3? Well, 1/3 is the same thing, if we want to have a common denominator, as 3/9.

So I can rewrite this as 3/9. So 7/9 minus 3/9 is going to be 4/9. So this is the same thing as m to the 4/9 power is going to be equal to m to the K/9.

So 4/9 must be the same thing as K/9. So we can say 4/9 is equal to K/9, which tells us that K must be equal to 4, and we're all done.

More Articles

View All
Optimistic in India | Years of Living Dangerously
I was told that if I wanted to see how the US will play a part in India’s energy future, I should come here—a coal power plant, believe it or not, erected right in the middle of Delhi. Mr. Ambassador, nice to meet you. Nice to meet you. I love the movie …
A Woman's Epic Journey to Climb 7 Mountains—Shot on a Phone | Short Film Showcase
Oh general dishy, or would boo be true! She should tie a me. Who dat? ACK. No tuna can to de shanty Shuler G. Ida, by dunya PHP. Know him elections for she, we Bishop targeted Jahida. I mean, cooling it. I’m not, don’t worry. And tonight he should be th…
Dark Energy: The Void Filler
A quick shoutout to Squarespace for sponsoring this video. In 1999, Saul Perlmutter was asking himself a question that many of us may have thought of before: will the universe exist forever, or will it have an end? Will the universe slowly expand for th…
Why Robots That Bend Are Better
These are soft robots. Their structural components are built, not out of metal or wood, but flexible materials like plastic tubing. But how do they work? And why would you want a soft robot in the first place? This video was sponsored by KiwiCo. Check out…
More on Normal force (shoe on floor) | Physics | Khan Academy
Check out this fine looking sneaker right here. We’re going to use this shoe to illustrate some more challenging normal force problems, and we’re going to take this as an opportunity to discuss a lot of the misconceptions that people have about the normal…
Estimating limit numerically | Limits | Differential Calculus | Khan Academy
Consider the table with function values for ( f(x) = \frac{x^2}{1 - \cos x} ) at positive ( x ) values near zero. Notice that there is one missing value in the table; this is the missing one right here. Use a calculator to evaluate ( f(x) ) at ( x = 0.1 )…