yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying quotient of powers (rational exponents) | Algebra I | High School Math | Khan Academy


2m read
·Nov 11, 2024

So we have an interesting equation here, and let's see if we can solve for K. We're going to assume that m is greater than zero, like always. Pause the video, try it out on your own, and then I will do it with you.

All right, let's work on this a little bit. You could imagine that the key to this is to simplify it using our knowledge of exponent properties. There's a couple of ways to think about it. First, we can look at this rational expression here: m to the 7/9 power divided by m to the 1/3 power.

And the key realization here is that if I have x to the a over x to the b, that this is going to be equal to x to the a minus b power. It actually comes straight out of the notion that x to the a over x to the b is the same thing as x to the a times 1/x to the b, which is the same thing as x to the a times 1/x to the b.

That's the same thing as x to the b, which is going to be the same thing as if I have a base to one exponent times the same base to another exponent. That's the same thing as that base to the sum of the exponents a plus b, which is just going to be a minus b. So we got to the same place.

So we can rewrite this as... So we can rewrite this part as being equal to m to the 7/9 power minus 1/3 power is equal to m to the K/9. And I think you see where this is going. What is 7/9 minus 1/3? Well, 1/3 is the same thing, if we want to have a common denominator, as 3/9.

So I can rewrite this as 3/9. So 7/9 minus 3/9 is going to be 4/9. So this is the same thing as m to the 4/9 power is going to be equal to m to the K/9.

So 4/9 must be the same thing as K/9. So we can say 4/9 is equal to K/9, which tells us that K must be equal to 4, and we're all done.

More Articles

View All
Jacksonian Democracy part 1
When we talk about the big social movements of the early 19th century in the United States, you can’t deny that the emergence of Jacksonian Democracy is one of the most influential aspects of early 19th century culture. So, what was Jacksonian Democracy,…
Short run and long run equilibrium and the business cycle | AP Macroeconomics | Khan Academy
What we’re going to do in this video is talk about the notion of equilibrium in a macroeconomics context. So let’s review a little bit of what we’ve already studied about aggregate demand and aggregate supply. So this vertical axis here, that is the pri…
The 'Value Investing' Strategy Explained - The Young Investors Podcast | Episode 1
Hey guys and welcome to our investing podcast! We’re doing a podcast, can you believe it? My name is Brandon, and I’m joined, gonna be joined each and every week by Hamish Hotter. Hello, how’s it going? Oh, I’m going quite well. How are you doing? Yeah…
This 18th Century Gold Rush Changed How the World Pans for Gold | National Geographic
Gold is the most powerful metal on earth, and Russia is one of the world’s leading suppliers of it. It all began in 1745 when a peasant named Tiara Fade Markov, while looking for crystal, found something else: a tiny gold speck inside a piece of quartz. H…
Khan Stories: Shrey
It was amazing! I don’t think I’ll ever forget in my life. “Mom, I made it to Harvard!” I mean, it was like a Bollywood Hollywood kind of a sentence. I’m Srey. Um, I’m a freshman at Harvard, class of 2022, and I’m from New Delhi, India. I’ve been using …
I grew from ZERO TO 100K SUBSCRIBERS in 3 MONTHS (& how you can too)
Imagine a life where you have complete control over your time, location, and finances. Well, the world is your oyster, and every day is an opportunity to live your dreams. But if I told you that you can achieve all this by doing what you love and sharing …