yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trig functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So let's say that we have ( y ) is equal to the secant of (\frac{3\pi}{2} - x), and what we want to do is we want to figure out what (\frac{dy}{dx}) is, the derivative of ( y ) with respect to ( x ) at ( x = \frac{\pi}{4} ).

Like always, pause this video and see if you could figure it out. Well, as you can see here, we have a composite function; we're taking the secant not just of ( x ), but you could view this as of another expression that I guess you could define or as of another function.

So, for example, if we call this right over here ( u(x) ), so let's do that. If we say ( u(x) ) is equal to (\frac{3\pi}{2} - x), we could also figure out ( u' ) of ( x ) is going to be equal to the derivative of (\frac{3\pi}{2}); that's just going to be zero. The derivative of (-x) is going to be (-1), and you could just view that as a power rule; it's ( 1 \cdot -1 \cdot x^{0} ), which is just one.

So there you go! We could view this as the derivative of secant with respect to ( u(x) ), and when we take the derivative, the derivative of secant with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

You might say, "Well, what about the derivative of secant?" Well, in other videos, we actually prove it out, and you could actually re-derive it. Secant is just ( \frac{1}{\cos(x)} ), so it comes straight out of the chain rule.

So in other videos, we proved that the derivative of the secant of ( x ) is equal to (\sec(x) \tan(x)). So if we're trying to find the derivative of ( y ) with respect to ( x ), well, it's going to be the derivative with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

So let's do that. The derivative of secant with respect to ( u(x) ) well, instead of seeing an ( x ) everywhere, you're going to see a ( u(x) ) everywhere. So this is going to be (\sec(u(x)) \tan(u(x))).

I don't have to write ( u(x) ); I could write (\frac{3\pi}{2} - x), but I'll write ( u(x) ) right over here just to really visualize what we're doing: (\sec(u(x)) \tan(u(x))).

So that's the derivative of secant with respect to ( u(x) ), and then the chain rule tells us it's going to be that times ( u' ). ( u' ) of ( x ) we already figured out is (-1), so I could write (\sec(u(x)) \tan(u(x)) \cdot u' ) where ( u' ) of ( x ) we already figured out is (-1).

Now, we want to evaluate ( \frac{dy}{dx} ) at ( x = \frac{\pi}{4} ). So when that is equal to ( \frac{pi}{4} ), let's see. This is going to be equal to (\sec\left(\frac{3\pi}{2} - \frac{\pi}{4}\right)\tan\left(\frac{3\pi}{2} - \frac{\pi}{4}\right) \cdot -1).

So if you have a common denominator, that is (\frac{6\pi}{4} - \frac{\pi}{4} = \frac{5\pi}{4}). So it's (\sec\left(\frac{5\pi}{4}\right) \tan\left(\frac{5\pi}{4}\right) \cdot -1).

Now, what is (\sec\left(\frac{5\pi}{4}\right)) and (\tan\left(\frac{5\pi}{4}\right))? Well, I don't have that memorized, but let's actually draw a unit circle, and we should be able to figure out what that is.

So a unit circle... I try to hand-draw it as best as I can; please forgive me that this circle does not look really like a circle! Alright, okay, so let me just remember my angles. In my brain, I sometimes convert into degrees. (\frac{\pi}{4}) is (45°), this is (\frac{\pi}{2}), this is (\frac{3\pi}{4}), this is (\frac{4\pi}{4}), this is (\frac{5\pi}{4}), lands you right over there.

So if you wanted to see where this intersects the unit circle, this is at the point where your ( x )-coordinate is (-\frac{\sqrt{2}}{2}) and your ( y )-coordinate is (-\frac{\sqrt{2}}{2}).

If you're wondering how I got that, I encourage you to review the unit circle and some of the standard angles around the unit circle; you'll see that in the trigonometry section of Khan Academy. But this is enough for us because the sine is the ( y )-coordinate. So (\sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}).

So this is (-\frac{\sqrt{2}}{2}), and then the cosine is the ( x )-coordinate, which is also (-\frac{\sqrt{2}}{2}), but it's going to be that squared: (\left(-\frac{\sqrt{2}}{2}\right)).

So if we square this, it's going to become positive, and then (\left(-\frac{\sqrt{2}}{2}\right)^{2} = \frac{2}{4} = \frac{1}{2}), so this is the denominator.

In the numerator, the negative cancels out with that negative, and so we are left with—and we deserve a little bit of a drum roll— that we are left with (\frac{-\frac{\sqrt{2}}{2}}{\frac{1}{2}}).

Well, that's the same thing as multiplying by (2), so we are left with (\sqrt{2}). This is the slope of the tangent line to the graph of ( y ) is equal to this when ( x ) is equal to (\frac{\pi}{4}). Pretty exciting!

More Articles

View All
What is Random?
Hey, Vsauce. Michael here and Derek. Generate(!) 78? That’s so random. Or is it? What does it mean to be random? Can anything really be random? What’s the most random thing ever? Today let’s stop being random and become ‘ransmart’. If something is unpred…
The Harsh Truth About Women | Nietzsche
Role-playing speech: [Music] They lied to you. Society, history, even your own desires, wrapped in Illusions. Women are not what they told you, not Angels, not villains, but something far more unsettling and far more powerful. Over a century ago, n saw t…
EconTalk Host Russ Roberts on Key Economic Concepts for Founders
Russ Roberts: Welcome to the podcast! Hey, correct, great to be here! So, you, for those who don’t know, are the host of EconTalk, a research fellow at Stanford’s Hoover Institution, and the author of several books including “How Adam Smith Can Change Yo…
Expression for compound or exponential growth
You put $3,800 in a savings account. The bank will provide 1.8% interest on the money in the account every year. Another way of saying that is that the money in the savings account will grow by 1.8% per year. Write an expression that describes how much m…
Natural hazards | Earth and society | Middle school Earth and space science | Khan Academy
Before I go to a new place, I tried to do some thorough research about it. What do I want to do there? What’s the weather forecast? What’s the chance that it might erupt? I learned this the hard way recently while preparing for a trip to Mount Rainier Nat…
The Firefighting-inspired Watch #shorts #watch
I should disclose right now then, so we actually make the watches, Kevin, from genuine upcycled firefighting materials. Even elements of the case, which you can see by the striking strap that you have on your wrist. Yes, I should disclose right now that I…