yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trig functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So let's say that we have ( y ) is equal to the secant of (\frac{3\pi}{2} - x), and what we want to do is we want to figure out what (\frac{dy}{dx}) is, the derivative of ( y ) with respect to ( x ) at ( x = \frac{\pi}{4} ).

Like always, pause this video and see if you could figure it out. Well, as you can see here, we have a composite function; we're taking the secant not just of ( x ), but you could view this as of another expression that I guess you could define or as of another function.

So, for example, if we call this right over here ( u(x) ), so let's do that. If we say ( u(x) ) is equal to (\frac{3\pi}{2} - x), we could also figure out ( u' ) of ( x ) is going to be equal to the derivative of (\frac{3\pi}{2}); that's just going to be zero. The derivative of (-x) is going to be (-1), and you could just view that as a power rule; it's ( 1 \cdot -1 \cdot x^{0} ), which is just one.

So there you go! We could view this as the derivative of secant with respect to ( u(x) ), and when we take the derivative, the derivative of secant with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

You might say, "Well, what about the derivative of secant?" Well, in other videos, we actually prove it out, and you could actually re-derive it. Secant is just ( \frac{1}{\cos(x)} ), so it comes straight out of the chain rule.

So in other videos, we proved that the derivative of the secant of ( x ) is equal to (\sec(x) \tan(x)). So if we're trying to find the derivative of ( y ) with respect to ( x ), well, it's going to be the derivative with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

So let's do that. The derivative of secant with respect to ( u(x) ) well, instead of seeing an ( x ) everywhere, you're going to see a ( u(x) ) everywhere. So this is going to be (\sec(u(x)) \tan(u(x))).

I don't have to write ( u(x) ); I could write (\frac{3\pi}{2} - x), but I'll write ( u(x) ) right over here just to really visualize what we're doing: (\sec(u(x)) \tan(u(x))).

So that's the derivative of secant with respect to ( u(x) ), and then the chain rule tells us it's going to be that times ( u' ). ( u' ) of ( x ) we already figured out is (-1), so I could write (\sec(u(x)) \tan(u(x)) \cdot u' ) where ( u' ) of ( x ) we already figured out is (-1).

Now, we want to evaluate ( \frac{dy}{dx} ) at ( x = \frac{\pi}{4} ). So when that is equal to ( \frac{pi}{4} ), let's see. This is going to be equal to (\sec\left(\frac{3\pi}{2} - \frac{\pi}{4}\right)\tan\left(\frac{3\pi}{2} - \frac{\pi}{4}\right) \cdot -1).

So if you have a common denominator, that is (\frac{6\pi}{4} - \frac{\pi}{4} = \frac{5\pi}{4}). So it's (\sec\left(\frac{5\pi}{4}\right) \tan\left(\frac{5\pi}{4}\right) \cdot -1).

Now, what is (\sec\left(\frac{5\pi}{4}\right)) and (\tan\left(\frac{5\pi}{4}\right))? Well, I don't have that memorized, but let's actually draw a unit circle, and we should be able to figure out what that is.

So a unit circle... I try to hand-draw it as best as I can; please forgive me that this circle does not look really like a circle! Alright, okay, so let me just remember my angles. In my brain, I sometimes convert into degrees. (\frac{\pi}{4}) is (45°), this is (\frac{\pi}{2}), this is (\frac{3\pi}{4}), this is (\frac{4\pi}{4}), this is (\frac{5\pi}{4}), lands you right over there.

So if you wanted to see where this intersects the unit circle, this is at the point where your ( x )-coordinate is (-\frac{\sqrt{2}}{2}) and your ( y )-coordinate is (-\frac{\sqrt{2}}{2}).

If you're wondering how I got that, I encourage you to review the unit circle and some of the standard angles around the unit circle; you'll see that in the trigonometry section of Khan Academy. But this is enough for us because the sine is the ( y )-coordinate. So (\sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}).

So this is (-\frac{\sqrt{2}}{2}), and then the cosine is the ( x )-coordinate, which is also (-\frac{\sqrt{2}}{2}), but it's going to be that squared: (\left(-\frac{\sqrt{2}}{2}\right)).

So if we square this, it's going to become positive, and then (\left(-\frac{\sqrt{2}}{2}\right)^{2} = \frac{2}{4} = \frac{1}{2}), so this is the denominator.

In the numerator, the negative cancels out with that negative, and so we are left with—and we deserve a little bit of a drum roll— that we are left with (\frac{-\frac{\sqrt{2}}{2}}{\frac{1}{2}}).

Well, that's the same thing as multiplying by (2), so we are left with (\sqrt{2}). This is the slope of the tangent line to the graph of ( y ) is equal to this when ( x ) is equal to (\frac{\pi}{4}). Pretty exciting!

More Articles

View All
Atomic spectra | Physics | Khan Academy
We can look at stars or nebulas or even planets which are very, very far away and estimate what composes them, what are the elements that are there inside of them. But how do we do that? How can we sit here on Earth and figure out what elements are presen…
ChatGPT Asked: What is the Most Important Principle for Investing
I was asked a question from chat GPT. Interesting, so I’ll tell you. Although I suspect you probably can get an equally good answer from chat GPT, the most important principle is about what I call the Holy Grail of investing. And that’s about diversifica…
Safari Live - Day 125 | National Geographic
Now remember this, this is a hundred percent live, so this is unplanned. You never know what you’re gonna find on our live safaris! My name is Brittany Smith, and for the first time in about six months, I’m reunited with the wildebeest. So, very exciting …
Principles for Success: "The Call to Adventure" | Episode 1
Principles for success: an ultra mini-series adventure in 30 minutes and in eight episodes. Episode 1: The Call to Adventure Before we begin, let me just establish the fact that I don’t know much relative to what I need to know. Whatever success I’ve ha…
How to calculate interquartile range IQR | Data and statistics | 6th grade | Khan Academy
Let’s get some practice calculating interquartile ranges. I’ve taken some exercises from the Khan Academy exercises here, and I’m going to solve it on my scratch pad. The following data points represent the number of animal crackers in each kid’s lunchbox…
Only the individual can search for Truth!
Truth is a very difficult thing to come by. The universe is mostly random and mostly full of false beliefs, and so truth requires a lot of rigor. The goal standards for truth are that you have to test it against a larger system that will give you objectiv…