yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trig functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So let's say that we have ( y ) is equal to the secant of (\frac{3\pi}{2} - x), and what we want to do is we want to figure out what (\frac{dy}{dx}) is, the derivative of ( y ) with respect to ( x ) at ( x = \frac{\pi}{4} ).

Like always, pause this video and see if you could figure it out. Well, as you can see here, we have a composite function; we're taking the secant not just of ( x ), but you could view this as of another expression that I guess you could define or as of another function.

So, for example, if we call this right over here ( u(x) ), so let's do that. If we say ( u(x) ) is equal to (\frac{3\pi}{2} - x), we could also figure out ( u' ) of ( x ) is going to be equal to the derivative of (\frac{3\pi}{2}); that's just going to be zero. The derivative of (-x) is going to be (-1), and you could just view that as a power rule; it's ( 1 \cdot -1 \cdot x^{0} ), which is just one.

So there you go! We could view this as the derivative of secant with respect to ( u(x) ), and when we take the derivative, the derivative of secant with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

You might say, "Well, what about the derivative of secant?" Well, in other videos, we actually prove it out, and you could actually re-derive it. Secant is just ( \frac{1}{\cos(x)} ), so it comes straight out of the chain rule.

So in other videos, we proved that the derivative of the secant of ( x ) is equal to (\sec(x) \tan(x)). So if we're trying to find the derivative of ( y ) with respect to ( x ), well, it's going to be the derivative with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

So let's do that. The derivative of secant with respect to ( u(x) ) well, instead of seeing an ( x ) everywhere, you're going to see a ( u(x) ) everywhere. So this is going to be (\sec(u(x)) \tan(u(x))).

I don't have to write ( u(x) ); I could write (\frac{3\pi}{2} - x), but I'll write ( u(x) ) right over here just to really visualize what we're doing: (\sec(u(x)) \tan(u(x))).

So that's the derivative of secant with respect to ( u(x) ), and then the chain rule tells us it's going to be that times ( u' ). ( u' ) of ( x ) we already figured out is (-1), so I could write (\sec(u(x)) \tan(u(x)) \cdot u' ) where ( u' ) of ( x ) we already figured out is (-1).

Now, we want to evaluate ( \frac{dy}{dx} ) at ( x = \frac{\pi}{4} ). So when that is equal to ( \frac{pi}{4} ), let's see. This is going to be equal to (\sec\left(\frac{3\pi}{2} - \frac{\pi}{4}\right)\tan\left(\frac{3\pi}{2} - \frac{\pi}{4}\right) \cdot -1).

So if you have a common denominator, that is (\frac{6\pi}{4} - \frac{\pi}{4} = \frac{5\pi}{4}). So it's (\sec\left(\frac{5\pi}{4}\right) \tan\left(\frac{5\pi}{4}\right) \cdot -1).

Now, what is (\sec\left(\frac{5\pi}{4}\right)) and (\tan\left(\frac{5\pi}{4}\right))? Well, I don't have that memorized, but let's actually draw a unit circle, and we should be able to figure out what that is.

So a unit circle... I try to hand-draw it as best as I can; please forgive me that this circle does not look really like a circle! Alright, okay, so let me just remember my angles. In my brain, I sometimes convert into degrees. (\frac{\pi}{4}) is (45°), this is (\frac{\pi}{2}), this is (\frac{3\pi}{4}), this is (\frac{4\pi}{4}), this is (\frac{5\pi}{4}), lands you right over there.

So if you wanted to see where this intersects the unit circle, this is at the point where your ( x )-coordinate is (-\frac{\sqrt{2}}{2}) and your ( y )-coordinate is (-\frac{\sqrt{2}}{2}).

If you're wondering how I got that, I encourage you to review the unit circle and some of the standard angles around the unit circle; you'll see that in the trigonometry section of Khan Academy. But this is enough for us because the sine is the ( y )-coordinate. So (\sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}).

So this is (-\frac{\sqrt{2}}{2}), and then the cosine is the ( x )-coordinate, which is also (-\frac{\sqrt{2}}{2}), but it's going to be that squared: (\left(-\frac{\sqrt{2}}{2}\right)).

So if we square this, it's going to become positive, and then (\left(-\frac{\sqrt{2}}{2}\right)^{2} = \frac{2}{4} = \frac{1}{2}), so this is the denominator.

In the numerator, the negative cancels out with that negative, and so we are left with—and we deserve a little bit of a drum roll— that we are left with (\frac{-\frac{\sqrt{2}}{2}}{\frac{1}{2}}).

Well, that's the same thing as multiplying by (2), so we are left with (\sqrt{2}). This is the slope of the tangent line to the graph of ( y ) is equal to this when ( x ) is equal to (\frac{\pi}{4}). Pretty exciting!

More Articles

View All
Homeroom with Sal & Lester Holt - Friday, August 14
Hi everyone, Sal here from Khan Academy. Welcome to our homeroom live stream. Very excited about the conversation we’re about to have with Lester Holt. Uh, before we jump into that conversation, I will make a few of my standard announcements. Uh, one, j…
How to Evict Your Raccoon Roommates | National Geographic
The main conflict between people and raccoons is when raccoons use human resources to meet their own needs and ends. Raccoons are the quintessential generalist; they really can live in a whole variety of habitats. In Washington, DC, they see urban areas a…
Why Warren Buffett is Selling BILLIONS in Stock
The best way to learn about investing is to follow what great investors are doing in their own stock portfolios, and the number one investor you should be following is none other than the legend himself, Warren Buffett. Following Buffett’s stock portfolio…
How Much of the Earth Can You See at Once?
Foreign Michael here, and here I am, the real Michael. This Michael was created by a brilliant young man named Mitchell, who brought it to me at a meet and greet after Brain Candy Live. It is phenomenal, and obviously the most handsome Jack-in-the-Box eve…
Introduction to sampling distributions
So let’s say I have a bag of colored balls here, and we know that 40 of the balls are orange. Now imagine defining a random variable X, and X is based on a trial where we stick our hand in this bag, we don’t look around, and we randomly pick a ball, look …
Writing linear equations in two variables given a table | Algebra 1 (TX TEKS) | Khan Academy
We’re told a city bike rental service charges customers based on how long they rent the bicycle. The table shows the total cost for renting a bicycle as a function of the number of rental hours. So they say complete the equation to model the hourly rental…