yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trig functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So let's say that we have ( y ) is equal to the secant of (\frac{3\pi}{2} - x), and what we want to do is we want to figure out what (\frac{dy}{dx}) is, the derivative of ( y ) with respect to ( x ) at ( x = \frac{\pi}{4} ).

Like always, pause this video and see if you could figure it out. Well, as you can see here, we have a composite function; we're taking the secant not just of ( x ), but you could view this as of another expression that I guess you could define or as of another function.

So, for example, if we call this right over here ( u(x) ), so let's do that. If we say ( u(x) ) is equal to (\frac{3\pi}{2} - x), we could also figure out ( u' ) of ( x ) is going to be equal to the derivative of (\frac{3\pi}{2}); that's just going to be zero. The derivative of (-x) is going to be (-1), and you could just view that as a power rule; it's ( 1 \cdot -1 \cdot x^{0} ), which is just one.

So there you go! We could view this as the derivative of secant with respect to ( u(x) ), and when we take the derivative, the derivative of secant with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

You might say, "Well, what about the derivative of secant?" Well, in other videos, we actually prove it out, and you could actually re-derive it. Secant is just ( \frac{1}{\cos(x)} ), so it comes straight out of the chain rule.

So in other videos, we proved that the derivative of the secant of ( x ) is equal to (\sec(x) \tan(x)). So if we're trying to find the derivative of ( y ) with respect to ( x ), well, it's going to be the derivative with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

So let's do that. The derivative of secant with respect to ( u(x) ) well, instead of seeing an ( x ) everywhere, you're going to see a ( u(x) ) everywhere. So this is going to be (\sec(u(x)) \tan(u(x))).

I don't have to write ( u(x) ); I could write (\frac{3\pi}{2} - x), but I'll write ( u(x) ) right over here just to really visualize what we're doing: (\sec(u(x)) \tan(u(x))).

So that's the derivative of secant with respect to ( u(x) ), and then the chain rule tells us it's going to be that times ( u' ). ( u' ) of ( x ) we already figured out is (-1), so I could write (\sec(u(x)) \tan(u(x)) \cdot u' ) where ( u' ) of ( x ) we already figured out is (-1).

Now, we want to evaluate ( \frac{dy}{dx} ) at ( x = \frac{\pi}{4} ). So when that is equal to ( \frac{pi}{4} ), let's see. This is going to be equal to (\sec\left(\frac{3\pi}{2} - \frac{\pi}{4}\right)\tan\left(\frac{3\pi}{2} - \frac{\pi}{4}\right) \cdot -1).

So if you have a common denominator, that is (\frac{6\pi}{4} - \frac{\pi}{4} = \frac{5\pi}{4}). So it's (\sec\left(\frac{5\pi}{4}\right) \tan\left(\frac{5\pi}{4}\right) \cdot -1).

Now, what is (\sec\left(\frac{5\pi}{4}\right)) and (\tan\left(\frac{5\pi}{4}\right))? Well, I don't have that memorized, but let's actually draw a unit circle, and we should be able to figure out what that is.

So a unit circle... I try to hand-draw it as best as I can; please forgive me that this circle does not look really like a circle! Alright, okay, so let me just remember my angles. In my brain, I sometimes convert into degrees. (\frac{\pi}{4}) is (45°), this is (\frac{\pi}{2}), this is (\frac{3\pi}{4}), this is (\frac{4\pi}{4}), this is (\frac{5\pi}{4}), lands you right over there.

So if you wanted to see where this intersects the unit circle, this is at the point where your ( x )-coordinate is (-\frac{\sqrt{2}}{2}) and your ( y )-coordinate is (-\frac{\sqrt{2}}{2}).

If you're wondering how I got that, I encourage you to review the unit circle and some of the standard angles around the unit circle; you'll see that in the trigonometry section of Khan Academy. But this is enough for us because the sine is the ( y )-coordinate. So (\sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}).

So this is (-\frac{\sqrt{2}}{2}), and then the cosine is the ( x )-coordinate, which is also (-\frac{\sqrt{2}}{2}), but it's going to be that squared: (\left(-\frac{\sqrt{2}}{2}\right)).

So if we square this, it's going to become positive, and then (\left(-\frac{\sqrt{2}}{2}\right)^{2} = \frac{2}{4} = \frac{1}{2}), so this is the denominator.

In the numerator, the negative cancels out with that negative, and so we are left with—and we deserve a little bit of a drum roll— that we are left with (\frac{-\frac{\sqrt{2}}{2}}{\frac{1}{2}}).

Well, that's the same thing as multiplying by (2), so we are left with (\sqrt{2}). This is the slope of the tangent line to the graph of ( y ) is equal to this when ( x ) is equal to (\frac{\pi}{4}). Pretty exciting!

More Articles

View All
I FOUND THE 5 BEST BANK ACCOUNTS!
What’s up you guys! It’s Graham here. So one week ago, I made a video going over the worst bank accounts out there. These are the ones that charge you endless fees, that pay you no interest, that rob you as soon as you drop below their daily minimums, and…
Service in the United States | Citizenship | High school civics | Khan Academy
[Instructor] When you think about service in the United States, what do you imagine? Most people immediately think of military service, serving in one of the branches of the Armed Forces like the Army or the Air Force, and military service is an importa…
Earth's fossil record | Evolution | Middle school biology | Khan Academy
[Instructor] Life on Earth has existed for billions of years. Humans know this, not because we’ve been around the whole time, but instead, thanks to the discovery of fossils, which tell us about organisms that lived in the distant past. Scientists have fo…
The Biggest Housing Crash Of Our Generation Is Coming
What’s up guys, it’s Graham here. So, I normally don’t post back-to-back real estate videos, but when I saw this headline, I had a feeling that quite a few people are going to be asking for my thoughts. If you don’t know what I’m talking about, it’s this:…
Prepositions of neither space nor time | The parts of speech | Grammar | Khan Academy
Hey Garans, we’ve talked about prepositions of time, and we’ve talked about prepositions of space. I couldn’t come up with a name for these because the following five prepositions are examples of what we would call prepositions that have connotations for …
Diane Greene at Startup School 2013
Hi there. I’ve been in this auditorium once before. I think it was before you were born; it was 1989. I was working for Tandem Computers, which was one of the biggest companies in Silicon Valley. The very wonderful, irreverent founder CEO was holding an a…