yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Trig functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So let's say that we have ( y ) is equal to the secant of (\frac{3\pi}{2} - x), and what we want to do is we want to figure out what (\frac{dy}{dx}) is, the derivative of ( y ) with respect to ( x ) at ( x = \frac{\pi}{4} ).

Like always, pause this video and see if you could figure it out. Well, as you can see here, we have a composite function; we're taking the secant not just of ( x ), but you could view this as of another expression that I guess you could define or as of another function.

So, for example, if we call this right over here ( u(x) ), so let's do that. If we say ( u(x) ) is equal to (\frac{3\pi}{2} - x), we could also figure out ( u' ) of ( x ) is going to be equal to the derivative of (\frac{3\pi}{2}); that's just going to be zero. The derivative of (-x) is going to be (-1), and you could just view that as a power rule; it's ( 1 \cdot -1 \cdot x^{0} ), which is just one.

So there you go! We could view this as the derivative of secant with respect to ( u(x) ), and when we take the derivative, the derivative of secant with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

You might say, "Well, what about the derivative of secant?" Well, in other videos, we actually prove it out, and you could actually re-derive it. Secant is just ( \frac{1}{\cos(x)} ), so it comes straight out of the chain rule.

So in other videos, we proved that the derivative of the secant of ( x ) is equal to (\sec(x) \tan(x)). So if we're trying to find the derivative of ( y ) with respect to ( x ), well, it's going to be the derivative with respect to ( u(x) ) times the derivative of ( u ) with respect to ( x ).

So let's do that. The derivative of secant with respect to ( u(x) ) well, instead of seeing an ( x ) everywhere, you're going to see a ( u(x) ) everywhere. So this is going to be (\sec(u(x)) \tan(u(x))).

I don't have to write ( u(x) ); I could write (\frac{3\pi}{2} - x), but I'll write ( u(x) ) right over here just to really visualize what we're doing: (\sec(u(x)) \tan(u(x))).

So that's the derivative of secant with respect to ( u(x) ), and then the chain rule tells us it's going to be that times ( u' ). ( u' ) of ( x ) we already figured out is (-1), so I could write (\sec(u(x)) \tan(u(x)) \cdot u' ) where ( u' ) of ( x ) we already figured out is (-1).

Now, we want to evaluate ( \frac{dy}{dx} ) at ( x = \frac{\pi}{4} ). So when that is equal to ( \frac{pi}{4} ), let's see. This is going to be equal to (\sec\left(\frac{3\pi}{2} - \frac{\pi}{4}\right)\tan\left(\frac{3\pi}{2} - \frac{\pi}{4}\right) \cdot -1).

So if you have a common denominator, that is (\frac{6\pi}{4} - \frac{\pi}{4} = \frac{5\pi}{4}). So it's (\sec\left(\frac{5\pi}{4}\right) \tan\left(\frac{5\pi}{4}\right) \cdot -1).

Now, what is (\sec\left(\frac{5\pi}{4}\right)) and (\tan\left(\frac{5\pi}{4}\right))? Well, I don't have that memorized, but let's actually draw a unit circle, and we should be able to figure out what that is.

So a unit circle... I try to hand-draw it as best as I can; please forgive me that this circle does not look really like a circle! Alright, okay, so let me just remember my angles. In my brain, I sometimes convert into degrees. (\frac{\pi}{4}) is (45°), this is (\frac{\pi}{2}), this is (\frac{3\pi}{4}), this is (\frac{4\pi}{4}), this is (\frac{5\pi}{4}), lands you right over there.

So if you wanted to see where this intersects the unit circle, this is at the point where your ( x )-coordinate is (-\frac{\sqrt{2}}{2}) and your ( y )-coordinate is (-\frac{\sqrt{2}}{2}).

If you're wondering how I got that, I encourage you to review the unit circle and some of the standard angles around the unit circle; you'll see that in the trigonometry section of Khan Academy. But this is enough for us because the sine is the ( y )-coordinate. So (\sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}).

So this is (-\frac{\sqrt{2}}{2}), and then the cosine is the ( x )-coordinate, which is also (-\frac{\sqrt{2}}{2}), but it's going to be that squared: (\left(-\frac{\sqrt{2}}{2}\right)).

So if we square this, it's going to become positive, and then (\left(-\frac{\sqrt{2}}{2}\right)^{2} = \frac{2}{4} = \frac{1}{2}), so this is the denominator.

In the numerator, the negative cancels out with that negative, and so we are left with—and we deserve a little bit of a drum roll— that we are left with (\frac{-\frac{\sqrt{2}}{2}}{\frac{1}{2}}).

Well, that's the same thing as multiplying by (2), so we are left with (\sqrt{2}). This is the slope of the tangent line to the graph of ( y ) is equal to this when ( x ) is equal to (\frac{\pi}{4}). Pretty exciting!

More Articles

View All
I'm Quitting. My Last Video.
You know, I originally had something planned out for this video, but then I realized it. I may as well just speak from the heart. So, I think I owe it to everybody to explain what’s going on and why I’m going to be leaving YouTube. It sucks because, you …
Death From Space — Gamma-Ray Bursts Explained
Imagine if you could gather the energy from every star within a hundred million light years. From thousands of galaxies, each with billions of stars. Imagine, you could take this kind of power, and use it to fire the biggest super-weapon in the universe. …
How Tutankhamun Got His Gold | Lost Treasures of Egypt
Thomas and Jennifer are investigating one of Tutankhamun’s secrets, excavating under a ruined fortress for evidence he got his gold from the inhospitable eastern desert. Did his miners shelter here? The team has just found something: stone blocks that off…
Deserts 101 | National Geographic
[Narrator] Wind whips over a barren wasteland. Vast nothingness as far as the eye can see, or so it may seem. Creatures peek out of burrows, scurry across the sand, and soar through the sky, revealing a landscape not as lifeless as it might first appear. …
Why The Stock Market JUST Dropped
What’s up, Graham? It’s guys you here, and I know I always preach the age-old sayings: don’t time the market, buy and hold; time in the market beats timing the market; the stock market is not the economy; and the market can remain irrational longer than y…
Rounding to the nearest 10
In this video, we’re going to be doing some rounding, which you’re probably not familiar with just yet. But you’ll see that it’s pretty straightforward, and we’re going to start by rounding to the nearest 10. So the first question is, what is rounding an…