yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Explicit Laplacian formula


3m read
·Nov 11, 2024

So let's say you have yourself some kind of multivariable function, and this time let's say it's got some very high dimensional input. So X1, X2, on and on and on, up to, you know, X sub n for some large number n.

Um, in the last couple videos, I told you about the Lassan operator, which is a way of taking in your scalar valued function f, and it gives you a new scalar valued function. It's kind of like a second derivative thing because it takes the divergence of the gradient of your function f. So the gradient of f gives you a vector field, and the divergence of that gives you a scalar field.

What I want to show you here is another formula that you might commonly see for this Leian. So first, let's kind of abstractly write out what the gradient of f will look like.

So we start by taking this Dell operator, which is going to be a vector full of partial differential operators: partial with respect to X1, partial with respect to X2, and kind of on and on and on up to partial with respect to whatever that last input variable is. You take that, that whole thing, and then you just kind of imagine multiplying it by your function.

Uh, so what you end up getting is all the different partial derivatives of f, right? It's partial of f with respect to the first variable, and then kind of on and on and on up until you get the partial derivative of f with respect to that last variable X sub n.

And the divergence of that, and just to save myself some writing, I'm going to say you take that n operator and then you imagine taking the dot product between that whole operator and this gradient vector that you have here.

What you end up getting is, well, you start by multiplying the first components, which involves taking the partial derivative with respect to X1, that first variable, of the partial derivative of f with respect to that same variable.

So it looks like the second partial derivative of f with respect to that first variable, so the second partial derivative of f with respect to X1, that first variable. And then you imagine kind of adding what the product of these next two items will be.

For very similar reasons, that's going to look like the second partial derivative of f with respect to that second variable, partial X2 squared. And you do this to all of them, and you're adding them all up until you find yourself, you know, doing it to the last one.

So you've got plus and then a whole bunch of things, and you'll be taking the second partial derivative of f with respect to that last variable, partial of X sub n. This is another format in which you might see the Lan, and oftentimes it's written, um, kind of compactly.

So people will say the Lan of your function f is equal to, and then using Sigma notation, you'd say the sum from I is equal to 1 up to, you know, 1, 2, 3, up to n. So the sum from that up to n of your second partial derivatives, partial squared of f with respect to that e variable.

So, you know, if you were thinking in terms of three variables, often X1, X2, X3, we instead write XYZ, but it's common to more generally just say X sub I. So this, this here is kind of the alternate formula that you might see for the Lan.

Personally, I always like to think about it as taking the divergence of the gradient of f because you're thinking about the gradient field, and the divergence of that kind of corresponds to maxima and minima of your original function.

Which is what I talked about in the initial intuition of the Lassan video. But this, this formula is probably a little more straightforward when it comes to actual computations.

And oh wait, sorry, I forgot I squared there, didn't I? So, uh, partial X squared. So this is the second derivative. Yeah, so summing, summing these, uh, second partial derivatives, and you can probably see this is kind of a more straightforward way to compute a given example that you might come across.

And it also makes clear how the Lan is kind of an extension of the idea of a second derivative. See you next video.

More Articles

View All
Here's What $44,000,000 Buys You In Hollywood
What’s up guys, it’s Graham here! So, two months ago, we toured a 44 million dollar house, but the thing was at the time, the home was still under construction, and you couldn’t really get a good idea of what the final product would truly look like. Well,…
Dehumanization has been trending for decades. Here’s how. | Adam Waytz
This trend toward dehumanization over the past four or five decades manifests in four different pillars. One is political polarization, where people from the left and the right ideologically are more pulled apart than ever before. They’re more fractured,…
Cell specialization | Genes, cells, and organisms | High school biology | Khan Academy
Ah, the basic building blocks of all living things: cells. These incredible packages of organelles and subcellular components carry out a variety of functions in the body, like taking in nutrients, converting them into energy, and working with other cells…
Katy Perry - Hot N Cold (Official Music Video)
(church bell ringing) Katy, do you take Alexander to be your lawfully wedded husband? I do. Alexander, do you take Katy to be your lawfully wedded wife? (upbeat pop music) ♪ You change your mind ♪ ♪ Like a girl changes clothes ♪ ♪ Yeah, you PMS like a…
The Kangaroo is the World's Largest Hopping Animal | National Geographic
[Music] The kangaroo, one of Australia’s most recognizable marsupials. There are a handful of species found all over the country, from the antillipine kangaroo in the far northern reaches to the aptly named eastern gray. The only large animal to hop as a…
Why Einstein Thought Nuclear Weapons Were Impossible
Now that we have nuclear weapons and nuclear power plants, you might think that it was always inevitable that we would be able to harness the energy inside the nucleus of atoms. But that was far from the case. In fact, serious scientists thought the idea …