yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing quadratics by linear expressions with remainders: missing x-term | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

This polynomial division business is a little bit more fun than we expected, so let's keep going. So let's say that, I guess again, someone walks up to you in the street and says, "What is x squared plus 1 divided by x plus 2?" So pause this video and have a go at that. And I'll give you a little bit of a warning; this one's a little bit more involved than you might expect.

All right, so there's two ways to approach this. Either we can try to re-express the numerator where it involves an x plus two somehow, or we could try to do algebraic long division. So let me do the first way.

So x squared plus 1, it's not obvious that you can factor it out, but can you write something that has x plus 2 as a factor? Interestingly enough, it has no first degree terms because we don't want some first degree, weird first degree terms sitting up there. The best thing that I could think of is constructing a difference of squares using x plus 2.

So we know that x plus 2 times x minus 2 is equal to x squared minus 4. So what if we were to write x squared minus 4 up here, and then we would just have to add five to get to plus one? So what if we were to write x squared minus four, and then we write plus five? This expression and that expression up there, those are completely equivalent.

But why did I do that? Well, now I can write x squared minus 4 as x plus 2 times x minus 2. So then I could rewrite this entire expression as ( \frac{x + 2 \cdot (x - 2)}{x + 2} + \frac{5}{x + 2} ). And now, as long as x does not equal negative 2, then we could divide the numerator and the denominator by x plus 2.

Then we would be left with ( x - 2 + \frac{5}{x + 2} ), and I'll put that little constraint if I want to say that this expression is the same as that first expression for x not equaling negative 2. So here we'd say, "Hey, x squared plus 1 divided by x plus 2 is ( x - 2 ) and then we have a remainder of 5." Remainder of 5.

Now, let's do the same question or try to rewrite this using algebraic long division. We'll see that this is actually a little bit more straightforward. So we are going to divide x plus 2 into x squared plus one. Now, when I write things out, I like to be very careful with my, I guess you could say, my different places for the different degrees.

So x squared plus one has no first degree term, so I'm going to write the one out here—so, second degree, no first degree term, and then we have a one, which is you could view as our zero degree term or our constant term.

And so we do the same drill. How many times does x go into x squared? We just look at the highest degree terms here. x goes into x squared x times; that's first degree, so I put it in the first degree column. x times 2 is 2x, x times x is x squared.

And now we want to subtract. So what is this going to be equal to? We know the x squareds can cancel out, and then I'm going to be subtracting negative 2x from—you could view this as plus 0x up here plus 1. And so you're left with negative 2x, and then we bring down that 1.

Plus 1, x goes into negative 2x negative 2 times. Put that in the constant column. Negative 2 times 2 is negative 4, and then negative 2 times x is negative 2x.

Now we have to be very careful here because we want to subtract the negative 2x minus 4 from the negative 2x plus 1. We could view it as this, or we could just distribute the negative sign, and then this would be positive 2x plus 4.

And then the two x's, the 2x and the negative 2x cancels out; 1 plus 4 is 5. And there's no obvious way of dividing x plus 2 into 5, so we would call that the remainder. Exactly what we had before when we divided with algebraic long division; we got ( x - 2 ) with a remainder of five.

More Articles

View All
Tour of the Khan Academy student experience
Hi, I’m Kim from Khan Academy and I’m here with Megan, who leads us teacher education. Hi Megan! Hi Kim! In this video, we are going to walk you through the Khan Academy learner or student experience. So Megan, who is considered a learner on Khan Acade…
S&P 500 short. A present for the holidays
So no one actually knows this. It’s a big mystery as to how much money did stock investors actually make. If no one knows how much money stocks have actually returned, why do people think that it’s actually given investors back something positive? There’s…
Pike Surprise | Life Below Zero
This time of year, the pike are spawning in the shallows. There’s a grassy area just up around the corner where I might find some. I haven’t caught a pike yet this year, so you never know exactly what you’re going to find, but I’m hoping for some good fis…
7 Stoic principles to MASTER THE ART OF NOT CARING AND LETTING GO | Stoicism
STOICISM INSIGHTS Presents “7 Stoic principles to MASTER THE ART OF NOT CARING AND LETTING GO.” Listen up, fellow STOICS of the digital age. You’ve stumbled upon a golden treasure. And no, I’m not talking about the latest viral video or meme. If you’ve e…
Improving Weather Prediction Accuracy | StarTalk
NEIL DEGRASSE TYSON: You know what we have? We have a video dispatch from an actual local news meteorologist to help us explain how they make their predictions happen. Let’s check it out. NICK GREGORY: Hello, Dr. Tyson. Nick Gregory here at the Fox 5 Wea…
Last Wild Places: Gorongosa | National Geographic
(Mysterious music) - The war took a lot from this place. We all started from this wilderness, and it has to remain on us; otherwise, we lost our identity, we lost part of us. (Intense music) I am part of the next generation of women that has to make sure …