yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractions greater than 1 on the number line


2m read
·Nov 10, 2024

We're asked to move the dot to 7/6 on the number line, so pause this video. I can move this dot right over here, but I encourage you: pause the video and put your finger on where 7/6 would be on the number line.

All right, now let's work on this together. So what they're saying is, from 0 to this point on the number line, right over there, that gets us to 1/6. Each of these spaces are a sixth. So we go 0, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6, 7/6. Let me make sure I got that: each of these are a sixth. So we have 1, 2, 3, 4, 5, 6, 7/6.

So that's 7/6 on that number line. Now they have other ways of getting at the same idea. For example, they say which point is at nine-fourths on the number line, and they ask us to choose one answer. We can look at the choices here. So which choice shows nine-fourths on the number line? Pause this video and see if you can pick that.

All right, now let's look at each of these. It looks like in choice A, the space between zero and one is split into one, two, three, four equal spaces. So as we go from zero to this next line, that's a fourth, and it seems like it keeps going.

So this is one-fourth, two-fourths, three-fourths, four-fourths, five-fourths, six-fourths, seven-fourths, eight-fourths. Nine-fourths is here; that's what we're looking for. But the dot is not at nine-fourths—it's at ten-fourths, eleven-fourths, twelve-fourths—so I don't like choice A.

Let's see choice B. Let's see what this is. We have divided the space between zero and one into one, two, three, four, five, six equal spaces. So each of these are a sixth. To go from zero to one, you've already gone six-sixths, and then seven-sixths, eight-sixths, nine-sixths.

So this is nine-sixths, not nine-fourths. Let's look at this last choice. I'm already feeling like it should be the answer, but we can see that the spaces are the same as in our first choice.

So these are each fourths, once again—I know that because the space between zero and one, or any two whole numbers, is divided into four equal spaces. So to go from zero to one, you go four-fourths, and then five-fourths, six-fourths, seven-fourths, eight-fourths, and nine-fourths.

So choice C is definitely looking good. Let's do one more example. Here they say what fraction is located at point A on the number line. Pause this video and see if you can answer that.

All right, so between whole numbers, how many equal spaces do we have? It looks like we have one, two, three, four, five, six equal spaces. So things are divided into sixths: 1/6, 2/6, 3/6, 4/6, 5/6, 6/6—which is equal to 1—and then 7/6.

So this is 7 over 6, just like that, and we are done.

More Articles

View All
Passing atmospheric levels of cool 🧑‍🚀🌏 #womeninstem #space
This is how many tampons Sally Ride was offered on her first space mission, which lasted about six days. Like a lot of STEM fields, NASA was male-dominated, and Sally Ride was their first female astronaut. After her death, we learned something very privat…
Why You'll Never Be Happy
You wake up in the morning and go to work. You spend 8 hours typing away at your desk on a job you once loved but now kind of just tolerate. Once it’s 5:00 p.m., you go home, make dinner, and watch TV, only to do it all over again the next day. You play s…
Grace Garey Speaks at Female Founders Conference 2015
Hey guys, thanks so much for having me. Like Kat said, I am with Watsi. Watsi is the first global crowdfunding platform for healthcare. So, the easiest way to explain it is you can go on our website and see photos and read stories of patients from all aro…
Exploring Ciudad Perdida | Lost Cities With Albert Lin
[music playing] ALBERT LIN: It’s literally a city in the clouds. Maybe those Spanish stories weren’t just legends because that’s what a real lost city looks like. HELICOPTER PILOT: [inaudible] 1 0 1 2. ALBERT LIN: That’s Ciudad Perdida, the Lost City. …
Vatican City Explained
Vatican City: capitol of the Catholic Church, home to the pope, owner of impressive collections of art and history all contained within the borders of the world’s smallest country: conveniently circumnavigateable on foot in only 40 minutes. Just how did t…
Catalysts | Reaction rates and equilibrium | High school chemistry | Khan Academy
In this video we’re going to talk a little bit about catalysts. So let’s first imagine that we have two reactants, and I’m going to simplify things with these overly simplified drawings. So let’s say you have this reactant right over here, and I’m drawin…