yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractions greater than 1 on the number line


2m read
·Nov 10, 2024

We're asked to move the dot to 7/6 on the number line, so pause this video. I can move this dot right over here, but I encourage you: pause the video and put your finger on where 7/6 would be on the number line.

All right, now let's work on this together. So what they're saying is, from 0 to this point on the number line, right over there, that gets us to 1/6. Each of these spaces are a sixth. So we go 0, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6, 7/6. Let me make sure I got that: each of these are a sixth. So we have 1, 2, 3, 4, 5, 6, 7/6.

So that's 7/6 on that number line. Now they have other ways of getting at the same idea. For example, they say which point is at nine-fourths on the number line, and they ask us to choose one answer. We can look at the choices here. So which choice shows nine-fourths on the number line? Pause this video and see if you can pick that.

All right, now let's look at each of these. It looks like in choice A, the space between zero and one is split into one, two, three, four equal spaces. So as we go from zero to this next line, that's a fourth, and it seems like it keeps going.

So this is one-fourth, two-fourths, three-fourths, four-fourths, five-fourths, six-fourths, seven-fourths, eight-fourths. Nine-fourths is here; that's what we're looking for. But the dot is not at nine-fourths—it's at ten-fourths, eleven-fourths, twelve-fourths—so I don't like choice A.

Let's see choice B. Let's see what this is. We have divided the space between zero and one into one, two, three, four, five, six equal spaces. So each of these are a sixth. To go from zero to one, you've already gone six-sixths, and then seven-sixths, eight-sixths, nine-sixths.

So this is nine-sixths, not nine-fourths. Let's look at this last choice. I'm already feeling like it should be the answer, but we can see that the spaces are the same as in our first choice.

So these are each fourths, once again—I know that because the space between zero and one, or any two whole numbers, is divided into four equal spaces. So to go from zero to one, you go four-fourths, and then five-fourths, six-fourths, seven-fourths, eight-fourths, and nine-fourths.

So choice C is definitely looking good. Let's do one more example. Here they say what fraction is located at point A on the number line. Pause this video and see if you can answer that.

All right, so between whole numbers, how many equal spaces do we have? It looks like we have one, two, three, four, five, six equal spaces. So things are divided into sixths: 1/6, 2/6, 3/6, 4/6, 5/6, 6/6—which is equal to 1—and then 7/6.

So this is 7 over 6, just like that, and we are done.

More Articles

View All
Newton's third law | Physics | Khan Academy
Earth puts a force on an apple making it fall down. But the question is, does the apple put a force on the Earth as well? And if it does, is that force bigger, smaller, or the same? That’s what we want to find out in this video. Now, to try and answer th…
The 'Value Investing' Strategy Explained - The Young Investors Podcast | Episode 1
Hey guys and welcome to our investing podcast! We’re doing a podcast, can you believe it? My name is Brandon, and I’m joined, gonna be joined each and every week by Hamish Hotter. Hello, how’s it going? Oh, I’m going quite well. How are you doing? Yeah…
Responding To CRINGE Investment Advice | BEST and WORST
What’s up you guys? It’s Graham here. So, I would like to think of myself as being social media savvy. You know, I got a YouTube channel. I got an Instagram account that I post on every now and then. I even have a Facebook group that I browse every single…
Naming ionic compound with polyvalent ion | Atoms, compounds, and ions | Chemistry | Khan Academy
So we have the formula for an ionic compound here, and the goal of this video is: what do we call this thing? It clearly involves some cobalt and some sulfur, but how would we name it? Well, the convention is that the first element to be listed is going …
2019 Berkshire Hathaway Annual Meeting (Full Version)
Thank you, good morning and welcome to Berkshire Hathaway. For those of you who have come from out of state, welcome to Omaha. The city is delighted to have you here for this event. For those of you who came from outside of the country, welcome to the Un…
Exponential functions differentiation intro | Advanced derivatives | AP Calculus AB | Khan Academy
What I want to do in this video is explore taking the derivatives of exponential functions. So we’ve already seen that the derivative with respect to x of e to the x is equal to e to the x, which is a pretty amazing thing. One of the many things that make…