yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How do cancer cells behave differently from healthy ones? - George Zaidan


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

We all start life as one single cell. Then that cell divides, and we are two cells, then four, then eight. Cells form tissues, tissues form organs, organs form us. These cell divisions, by which we go from a single cell to 100 trillion cells, are called growth.

And growth seems like a simple thing because when we think of it, we typically think of someone getting taller or, later in life, wider. But to cells, growth isn't simple. Cell division is an intricate chemical dance that's part individual, part community-driven. And in a neighborhood of 100 trillion cells, sometimes things go wrong.

Maybe an individual cell's set of instructions, or DNA, gets a typo, what we call a mutation. Most of the time, the cell senses mistakes and shuts itself down, or the system detects a troublemaker and eliminates it. But, enough mutations can bypass the fail-safes, driving the cell to divide recklessly.

That one rogue cell becomes two, then four, then eight. At every stage, the incorrect instructions are passed along to the cells' offspring. Weeks, months, or years after that one rogue cell transformed, you might see your doctor about a lump in your breast. Difficulty going to the bathroom could reveal a problem in your intestine, prostate, or bladder.

Or, a routine blood test might count too many white cells or elevated liver enzymes. Your doctor delivers the bad news: it's cancer. From here, your strategy will depend on where the cancer is and how far it's progressed. If the tumor is slow-growing and in one place, surgery might be all you need, if anything.

If the tumor is fast-growing or invading nearby tissue, your doctor might recommend radiation or surgery followed by radiation. If the cancer has spread, or if it's inherently everywhere like a leukemia, your doctor will most likely recommend chemotherapy or a combination of radiation and chemo.

Radiation and most forms of chemo work by physically shredding the cells' DNA or disrupting the copying machinery. But neither radiation nor chemotherapeutic drugs target only cancer cells. Radiation hits whatever you point it at, and your bloodstream carries chemotherapeutics all over your body.

So, what happens when different cells get hit? Let's look at a healthy liver cell, a healthy hair cell, and a cancerous cell. The healthy liver cell divides only when it is stressed; the healthy hair cell divides frequently; and the cancer cell divides even more frequently and recklessly.

When you take a chemotherapeutic drug, it will hit all of these cells. And remember that the drugs work typically by disrupting cell division. So, every time a cell divides, it opens itself up to attack, and that means the more frequently a cell divides, the more likely the drug is to kill it.

So, remember that hair cell? It divides frequently and isn't a threat. And, there are other frequently dividing cells in your body like skin cells, gut cells, and blood cells. So, the list of unpleasant side effects of cancer treatment parallels these tissue types: hair loss, skin rashes, nausea, vomiting, fatigue, weight loss, and pain.

That makes sense because these are the cells that get hit the hardest. So, in the end, it is all about growth. Cancer hijacks cells' natural division machinery and forces them to put the pedal to the metal, growing rapidly and recklessly.

But, using chemotherapeutic drugs, we take advantage of that aggressiveness, and we turn cancer's main strength into a weakness.

More Articles

View All
Calculating change in spending or taxes to close output gaps | AP Macroeconomics | Khan Academy
So we have two different economies depicted here. On the left, we have an economy where its short-run equilibrium output is above its full employment output, and so it has a positive output gap. It might seem like a good thing that your economy is just do…
Continuing the Fight for Political Representation | 100 Years After Women's Suffrage
Good afternoon everyone. My name is Rachel Hardigan, and I’m a senior writer with National Geographic. Today, we’re continuing our conversation, our celebration of women’s suffrage, and talking about the ongoing fight for political representation. It too…
This Yacht Makes $150,000 Per Week (Here's How)
What’s up guys, it’s Graham here! So this has been the most luxurious week of my entire life, and if you’re curious what a hundred and fifty thousand dollars a week gets you in Croatia, wait no longer! “Graham, welcome onboard Ohana.” “Thank you, I’m ha…
Touring A California Mansion
So we’re listed for 12 million dollars. The main house is over six thousand square feet, and then this path leads out to over fourteen miles of trails. It’s actually not a pool; it’s a hot tub. You can bring a car in through the barn doors here. I told yo…
Naming two isobutyl groups systematically | Organic chemistry | Khan Academy
In the last video, we named this molecule using the common names for this group right over here, and I thought it would be fun to also use to do the same thing, but use the systematic name. So, in the last video, we called this isobu, but if we wanted to …
Calculating internal energy and work example | Chemistry | Khan Academy
In this video, we’re going to do an example problem where we calculate internal energy and also calculate pressure-volume work. So we know the external pressure is 1.01 * 10^5 Pascals, and our system is some balloon. Let’s say it’s a balloon of argon gas.…