yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Using oxidation numbers to identify oxidation and reduction | Khan Academy


3m read
·Nov 10, 2024

What we have here is a reaction that involves iodine, manganese, oxygen, and hydrogen. What we want to do in this video is think about which of the elements are being oxidized in this reaction and which of the elements are being reduced in this reaction. Pause this video and see if you can figure that out before we work through it together.

All right, now let's work through it together. The way that I will tackle it—and you might have tackled it or I suggest you tackle it—is to figure out the oxidation numbers for each of the elements as we go into the reaction, as they are entering the reaction, and as they are exiting the reaction, or I guess you could say on either side of the reaction.

So first, let's look at this iodine right over here. Well, it has a—each iodine has a negative one charge. So it's quote hypothetical charge, which isn't so hypothetical in this case, which would be its oxidation number, is negative one. Now let's move over to this permanganate ion right over here. This one's a little bit more involved to figure out the oxidation numbers. But what we generally remember is that oxygen is quite electronegative. It is likely to hog two electrons.

When we think about hypothetical charge with oxidation numbers, oxygen is going to have a negative two oxidation number because it likes to hog those two extra electrons. So if each of these four oxygens has a hypothetical charge of negative 2, that would be negative 8 total. We see that this entire ion has a negative one charge. So that means that the manganese has to have a hypothetical charge—an oxidation number of plus seven.

So I just want to review that one again because this is a little bit involved. We said oxygen, we're going to go with a negative 2 because it likes to hog two electrons. We have four of them, so if you add all that together, you're at negative eight. The whole ion has a negative one. So what plus negative eight is going to be negative one? Well, positive seven. And so that's manganese's oxidation number as we enter into the reaction on this side of the reaction.

Then let's look at the water. Well, water—both the hydrogens and oxygens—these are ones you'll see a lot. This oxygen is going to have a negative two oxidation number, and each of those hydrogen atoms are going to have a plus one oxidation number because in that water molecule, if we know that the oxygen hogs the electrons, these are covalent bonds. But if we had to assign kind of a hypothetical charge where we said, all right, well let's just say the oxygen takes those two electrons, then each of those hydrogens will lose an electron and have a plus one oxidation number.

Now let's look at the right-hand side of this reaction. What's going on with these iodines here? Well, in this iodine molecule, they aren't gaining or losing electrons, so your oxidation number is zero. Then let's move on to the next compound. Each of these oxygens has an oxidation number of negative two. So what would be manganese's oxidation number? Well, the compound is neutral. Two oxygens at negative two is going to be negative four. So in order to be neutral, the manganese must be at plus four, an oxidation number of plus four.

And then last but not least, if we look at these hydroxide anions, each of the oxygen is going to have a negative two oxidation number, and then the hydrogen is going to have a plus one. We can confirm that that makes sense. Negative 2 plus 1 is going to be negative 1 for each of these ions.

So now let's just think about who's been oxidized and who's been reduced. Remember, oxidation is losing electrons (OIL RIG), reduction is gaining electrons, or reduction is a reduction in the oxidation number. So first, let's look at the iodine. We go from an oxidation number of negative 1 to zero. To go from an oxidation number of negative one to zero, you need to lose electrons, so it has been oxidized.

Let me write that down: the iodine has been oxidized. Now let's look at the manganese. We go from a plus seven to a plus four. Our oxidation number has gone down—it has been reduced. Now let's look at the oxygen. Well, everywhere the oxygen has an oxidation number of negative two, so nothing there. And then same thing for the hydrogens—plus one on both sides, so nothing there.

So the iodine has been oxidized, and the manganese has been reduced.

More Articles

View All
Tax The Rich
What’s up, Taxes? It’s Graham here. So normally, I don’t talk about topics that could get politicized or taken out of context, but I gotta say there is so much confusion and misinformation surrounding some of the new proposals aimed at taxing the rich th…
Lorentz transformation derivation part 1 | Special relativity | Physics | Khan Academy
So, in all of our videos on special relativity so far, we’ve had this little thought experiment where I’m floating in space and, right at time equals zero, a friend passes by in her spaceship. She’s traveling in the positive x direction; velocity is equal…
How to Fix the 'Finfluencer' Problem (feat. @ThePlainBagel)
I’m a billionaire. I can explain this in a way I might sound crazy. This is going to be the easiest money you can make in crypto: $2.7 million in one account. These cryptos are going to explode over the next 90 days. $14.1 million in another account, 102t…
Anti-Federalists and Brutus No. 1 | US government and civics | Khan Academy
You first learn about American history; it sometimes seems like it might have been a very easy or somewhat obvious transition from the Articles of Confederation to the Constitution, but it was not. It was a very vigorous debate. As we’ve talked about in p…
How To Become A MILLIONAIRE - The Truth No One TELLS YOU! | Kevin O'Leary & Barbara Corcoran
Oh, you can’t believe where we are tonight. We’re in Barbara’s home. This place is a very secret penthouse. I’m trying to make it exciting, Barbara, but we have a beautiful view of the park. We’re in the kitchen because Barbara is making me dinner tonight…
Dividing polynomials by x (no remainders) | Algebra 2 | Khan Academy
Let’s say someone walks up to you on the street and they give you this expression: x squared plus 7x plus 10 divided by x plus 2. And they say, “See if you could simplify this thing.” So, pause this video and see if you can do that. One way to think a…