yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing 3-digit numbers by 2 digit-numbers | Grade 5 (TX TEKS) | Khan Academy


2m read
·Nov 10, 2024

Let's get a little bit more practice dividing. So let's say we want to figure out what 868 divided by 28 is. Pause this video and see if you can figure that out.

All right, now let's work through this together. So we're going to take 28, we're going to divide it into 868. The first thing I would do is try to estimate how many times would 28 go into 86. Let's see, 28 is a little bit less than 30, and 86 is a little bit less than 90. 30 would go into 90 about three times, so let me try three here.

So let me put a three there, and let's figure out what 3 * 28 is. 3 * 8 is 24, and then 3 * 2 is 6 + 2 is 8. Looks like I did that right; I just got right below it. I didn't go over it. Here, 86 - 84 is 2. Bring down this eight right over here, and let me get rid of that so it doesn't confuse me.

How many times does 28 go into 28? Well, that one's pretty straightforward: it goes exactly one time. 1 * 28 is 28, and I'm done. I'm left with no remainder.

Let's look at another example here. Let's say we wanted to figure out what 724 divided by 53 is. Pause the video and have a go with that.

All right, so we have 53. We're trying to figure out how many times does it go into 724. So first estimating how many times does 53 go into 72? Well, it goes at least once. It doesn't go twice because that would be over 100, so let me just put a one here. 1 * 53 is 53.

Now let me subtract. You might be able to do this in your head. You might say, "Okay, 73 minus 53 would be 20," but this is 72, so it'd be 19. But let's just do this with regrouping just to make sure we're doing it well.

So let's see, I can take 10 from here, so that becomes a six, and I give that 10 to this two, so it becomes a 12. 12 - 3 is 9, 6 - 5 is 1, and now let me bring down this four. So I'm trying to figure out how many times does 53 go into 194.

So see, 50 would go into 200. I'm just estimating by rounding to the nearest, well, in this case, rounding to the nearest 100. But let's see if I—50 goes into 200 about four times, but this is less than—or exactly four times. This is less than 200, and this is greater than 50, so I'm going to try three.

3 * 3 is 9, 3 * 5 is 15. Now let me subtract, and let's see, I can regroup again. I can take 10 from here and put it over here, so then that becomes 14. 14 - 9 is 5, 8 - 5 is 3, and then 100 - 100, or 1 - 1, is zero.

So I'm left with a remainder of 35, and that is a remainder because I can't divide 53 into it anymore. So I get this is equal to 13 remainder 35, and we're done.

More Articles

View All
The aftermath... Tenants Stopped Paying Rent
What’s big, eyes? It’s Graham here. So last month, I addressed a highly publicized article which found that nearly 1⁄3 of Americans were unable to pay their rent for the month of April. At the time, that was a very alarming statistic. For someone who has…
Mixed number addition with regrouping
Let’s see if we can add five and two-fifths to three and four-fifths. Pause this video and see if you can figure out what this is. All right, now let’s do this together. We’ve had a little bit of practice adding mixed numbers in the past, and so one way …
Solving square-root equations: no solution | Mathematics III | High School Math | Khan Academy
Let’s say that we have the radical equation: the square root of 3x minus seven plus the square root of 2x minus one is equal to zero. I encourage you to pause the video and see if you can solve for X before we work through it together. Alright, so one t…
Factorization with substitution | Polynomial factorization | Algebra 2 | Khan Academy
We’re told that we want to factor the following expression that they have right here, and they say that we can factor the expression as ( u + v ) squared, where ( u ) and ( v ) are either constant integers or single variable expressions. What are ( u ) an…
STOICISM | How Epictetus Keeps Calm
Even though they followed the same philosophy, Marcus Aurelius was an emperor and Epictetus was a slave. The fact that someone from the lowest class became one of the greatest Stoic philosophers indicates that Stoicism isn’t just for the elite: it’s for e…
Constructing exponential models | Mathematics II | High School Math | Khan Academy
Derek sent a chain letter to his friends, asking them to forward the letter to more friends. The group of people who receive the email gains 910 of its size every 3 weeks and can be modeled by a function P, which depends on the amount of time T in weeks. …