yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Thomson's Plum Pudding Model of the Atom


2m read
·Nov 10, 2024

So the word atom means uncuttable, so the Greeks were thinking of it as a tiny hard sphere.

Phil: That's right.

Derek: And even up until the eighteen hundreds, that was the idea of an atom, the smallest piece of matter, a tiny hard sphere. But then we find out that that's not quite right, not quite. There were experiments in the eighteen hundreds that discovered the electron. JJ Thomson's experiments really worked out the electron was smaller than an atom, about 1000 times smaller than a hydrogen atom, and it was in all atoms.

Phil: That's right, not just hydrogen.

Derek: Whatever material he did his experiments on, he found there were electrons in them. There are electrons in all atoms. So I guess when you find something smaller than an atom, you need to propose a new model for the atom that actually has something smaller in it, some substructure.

Phil: That's right. So something like this. This is our model of the atom.

Phil: This is our model of the atom - in his day, it was known as the plum pudding model, but uh... here we have cherry tart.

Phil: Cherry tart, ok. So the idea being that we have an overall atom, usually pictured as spherical rather than 2D, but uh... but imbedded within it – and this is the important part – there are negative electrons represented by cherries, and they can come out. The overall atom is neutral, so that means that pudding part must be positive.

Derek: Now how would you get one of these electrons out of our pudding here? So electrons are negatively charged, so we'll need to put something very positive, which attracts electrons – a high voltage.

Derek: And that would have the effect of, say, like plucking a cherry out of the pudding.

Phil: That's pretty much it, yeah. You could do it kind of like that, so we're simulating what it would be like to put a positive charge up here.

Phil: That's right, that's right.

Derek: Pulling the electrons out of the atom, that's quite delicious.

Phil: Yeah! Well, that is the most delicious model of the atom, I've gotta say. So shall we uh, split the atom? Why don't you go ahead?

Phil: You want me to do it?

Derek: Yes! Who knows what could happen; a whole bunch of energy could be released.

Phil: Yeah, one, two, three...

More Articles

View All
Canada's Wild Rivers - 360 | Into Water
Freshwater ecosystems are a lifeline to our very existence. They support immense biodiversity, provide clean drinking water, and are powerful places where we can connect to both nature and ourselves. I’m Dalal Hannah, I’m a freshwater ecologist and Natio…
Uncle Tom's Cabin part 3
Hey Kim, hey Becca. So, we’ve been talking about Uncle Tom’s Cabin, uh published in 1852 by Harriet Beecher Stowe, and said to have been one of the main causes of the American Civil War. So remind me again what Uncle Tom’s Cabin was actually about. So, U…
Bill Belichick & Ray Dalio on Bill's Most Important Principles: Part 1
Bill, what are your main principles for success? Do your job, work hard, pay attention to details, and put the team first. I think they are the principles for all organizations. I think, ultimately, improvement should be putting the team first, improving…
Making an Undercover Drug Bust | Locked Up Abroad: Declassified
90 kilos of cocaine were found in the trunk of a vehicle at a border patrol checkpoint. The markings of the cocaine packages were the scorpion. This was the label for Amado and the Juarez cartel. If this guy was connected to the Juarez cartel, I knew this…
What Actually Happens When You Are Sick?
There is this idea floating around that what doesn’t kill you makes you stronger. That surviving a disease leaves you better off. And it seems to make sense because we have all experienced this. When you go through hardship, often you come out more resili…
Cooling down water by BOILING it
Let’s cool down some water by boiling it. The water in this beaker is hot, but it’s not boiling because the molecules in the beaker don’t have enough kinetic energy right now to rapidly fight against the air pressure from the outside that’s squeezing them…