yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Thomson's Plum Pudding Model of the Atom


2m read
·Nov 10, 2024

So the word atom means uncuttable, so the Greeks were thinking of it as a tiny hard sphere.

Phil: That's right.

Derek: And even up until the eighteen hundreds, that was the idea of an atom, the smallest piece of matter, a tiny hard sphere. But then we find out that that's not quite right, not quite. There were experiments in the eighteen hundreds that discovered the electron. JJ Thomson's experiments really worked out the electron was smaller than an atom, about 1000 times smaller than a hydrogen atom, and it was in all atoms.

Phil: That's right, not just hydrogen.

Derek: Whatever material he did his experiments on, he found there were electrons in them. There are electrons in all atoms. So I guess when you find something smaller than an atom, you need to propose a new model for the atom that actually has something smaller in it, some substructure.

Phil: That's right. So something like this. This is our model of the atom.

Phil: This is our model of the atom - in his day, it was known as the plum pudding model, but uh... here we have cherry tart.

Phil: Cherry tart, ok. So the idea being that we have an overall atom, usually pictured as spherical rather than 2D, but uh... but imbedded within it – and this is the important part – there are negative electrons represented by cherries, and they can come out. The overall atom is neutral, so that means that pudding part must be positive.

Derek: Now how would you get one of these electrons out of our pudding here? So electrons are negatively charged, so we'll need to put something very positive, which attracts electrons – a high voltage.

Derek: And that would have the effect of, say, like plucking a cherry out of the pudding.

Phil: That's pretty much it, yeah. You could do it kind of like that, so we're simulating what it would be like to put a positive charge up here.

Phil: That's right, that's right.

Derek: Pulling the electrons out of the atom, that's quite delicious.

Phil: Yeah! Well, that is the most delicious model of the atom, I've gotta say. So shall we uh, split the atom? Why don't you go ahead?

Phil: You want me to do it?

Derek: Yes! Who knows what could happen; a whole bunch of energy could be released.

Phil: Yeah, one, two, three...

More Articles

View All
These Faces Are The Same Color!
Akiyoshi Kok’s newest illusion is blowing my mind. You’ve got a white face and a black face. Psych! They are both the exact same gray. The face on top appears to be illuminated by a dimmer light source than the one below. So before putting anything into …
Turning Roadkill Into Art | National Geographic
I think what I’m aiming for is this notion of, I guess, seduction and revulsion. Something that’s really beautiful, really lush, rubbing up against something that’s also perhaps repulsive. I’m an artist and roadkill resurrector. The first body of work th…
Cuteness Overload | Project for Awesome 2014
Hey, it’s me Destin, welcome back to Smarter Every Day. So I’m gonna share something with you that’s so sweet you might actually cry, because I did the first time I saw it. There’s this little girl in Ohio who saw the Project for Awesome video I made las…
Do Robots Deserve Rights? What if Machines Become Conscious?
Imagine a future where your toaster anticipates what kind of toast you want. During the day, it scans the Internet for new and exciting types of toast. Maybe it asks you about your day and wants to chat about new achievements in toast technology. At what …
Taking and visualizing powers of a complex number | Precalculus | Khan Academy
We’re told to consider the complex number ( z ) is equal to negative one plus ( i ) times the square root of three. Find ( z ) to the fourth in polar and rectangular form. So pause this video and see if you can figure that out. All right, now let’s work …
The True Cost Of "Success"
What’s up you guys? It’s Graham here. So chances are, if you’re watching this video right now, I have a feeling you’re probably more ambitious than most. You probably set pretty high standards for yourself, and you’re willing to do whatever it takes to ge…