yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Thomson's Plum Pudding Model of the Atom


2m read
·Nov 10, 2024

So the word atom means uncuttable, so the Greeks were thinking of it as a tiny hard sphere.

Phil: That's right.

Derek: And even up until the eighteen hundreds, that was the idea of an atom, the smallest piece of matter, a tiny hard sphere. But then we find out that that's not quite right, not quite. There were experiments in the eighteen hundreds that discovered the electron. JJ Thomson's experiments really worked out the electron was smaller than an atom, about 1000 times smaller than a hydrogen atom, and it was in all atoms.

Phil: That's right, not just hydrogen.

Derek: Whatever material he did his experiments on, he found there were electrons in them. There are electrons in all atoms. So I guess when you find something smaller than an atom, you need to propose a new model for the atom that actually has something smaller in it, some substructure.

Phil: That's right. So something like this. This is our model of the atom.

Phil: This is our model of the atom - in his day, it was known as the plum pudding model, but uh... here we have cherry tart.

Phil: Cherry tart, ok. So the idea being that we have an overall atom, usually pictured as spherical rather than 2D, but uh... but imbedded within it – and this is the important part – there are negative electrons represented by cherries, and they can come out. The overall atom is neutral, so that means that pudding part must be positive.

Derek: Now how would you get one of these electrons out of our pudding here? So electrons are negatively charged, so we'll need to put something very positive, which attracts electrons – a high voltage.

Derek: And that would have the effect of, say, like plucking a cherry out of the pudding.

Phil: That's pretty much it, yeah. You could do it kind of like that, so we're simulating what it would be like to put a positive charge up here.

Phil: That's right, that's right.

Derek: Pulling the electrons out of the atom, that's quite delicious.

Phil: Yeah! Well, that is the most delicious model of the atom, I've gotta say. So shall we uh, split the atom? Why don't you go ahead?

Phil: You want me to do it?

Derek: Yes! Who knows what could happen; a whole bunch of energy could be released.

Phil: Yeah, one, two, three...

More Articles

View All
Long run and short run Phillips curves
Let’s talk a little bit about the short run and long run Phillips curve. Now, they’re named after the economist Bill Phillips, who saw in the 1950s what looked like an inverse relationship between inflation and the unemployment rate. He was studying decad…
Khan Academy Ed Talks featuring Brooke Mabry - Wednesday, December 16
Hi everyone, Sal Khan here from Khan Academy. Welcome to our Ed Talks Live, this new flavor of homeroom that we’re doing. We have a very exciting conversation with Brooke Mabry about learning loss, summer slide, and actually our partnership with NWEA as w…
Macaroni Penguins Swim, Surf, and Dodge Seals to Survive – Ep. 2 | Wildlife: Resurrection Island
Imagine having to surf to get home. Then imagine doing it after swimming 300 miles in the roughest ocean on the planet. Not to mention the seals waiting for their chance to rip your little head off. This is just a single day in the extraordinary life of t…
Pronoun-antecedent agreement | Syntax | Khan Academy
Hello grammarians! Hello visiting cousin Beth! Hello cousin David! So today, we’re going to be talking about pronoun antecedent agreement. And what is that? So an antecedent is a thing that goes before. So ‘ante’ means before and ‘seedent’ is like a goin…
Camera Trap Captures Surprise Treetop Proposal | National Geographic
So, I was down in Panama doing research in the canopy of the rainforests. I knew that my boyfriend, Dan, was coming to visit me in a couple of weeks, so I was actually really excited. [Music] I called him up and I told him that he would not only be able t…
Inflection points (algebraic) | AP Calculus AB | Khan Academy
Let G of x = 1⁄4 x^4 - 4x^3 + 24x^2. For what values of x does the graph of G have an inflection point or have a point of inflection? So, let’s just remind ourselves what a point of inflection is. A point of inflection is where we change our concavity, o…