yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Thomson's Plum Pudding Model of the Atom


2m read
·Nov 10, 2024

So the word atom means uncuttable, so the Greeks were thinking of it as a tiny hard sphere.

Phil: That's right.

Derek: And even up until the eighteen hundreds, that was the idea of an atom, the smallest piece of matter, a tiny hard sphere. But then we find out that that's not quite right, not quite. There were experiments in the eighteen hundreds that discovered the electron. JJ Thomson's experiments really worked out the electron was smaller than an atom, about 1000 times smaller than a hydrogen atom, and it was in all atoms.

Phil: That's right, not just hydrogen.

Derek: Whatever material he did his experiments on, he found there were electrons in them. There are electrons in all atoms. So I guess when you find something smaller than an atom, you need to propose a new model for the atom that actually has something smaller in it, some substructure.

Phil: That's right. So something like this. This is our model of the atom.

Phil: This is our model of the atom - in his day, it was known as the plum pudding model, but uh... here we have cherry tart.

Phil: Cherry tart, ok. So the idea being that we have an overall atom, usually pictured as spherical rather than 2D, but uh... but imbedded within it – and this is the important part – there are negative electrons represented by cherries, and they can come out. The overall atom is neutral, so that means that pudding part must be positive.

Derek: Now how would you get one of these electrons out of our pudding here? So electrons are negatively charged, so we'll need to put something very positive, which attracts electrons – a high voltage.

Derek: And that would have the effect of, say, like plucking a cherry out of the pudding.

Phil: That's pretty much it, yeah. You could do it kind of like that, so we're simulating what it would be like to put a positive charge up here.

Phil: That's right, that's right.

Derek: Pulling the electrons out of the atom, that's quite delicious.

Phil: Yeah! Well, that is the most delicious model of the atom, I've gotta say. So shall we uh, split the atom? Why don't you go ahead?

Phil: You want me to do it?

Derek: Yes! Who knows what could happen; a whole bunch of energy could be released.

Phil: Yeah, one, two, three...

More Articles

View All
Mustache Maintenance - Fan Questions | StarTalk
[Music] I’ve never in my life shaved my mustache. I’ve trimmed it, but I’ve never—a razor has never touched my upper lip in my entire life. So, two things are true: there’s no hair growth between like every pair of my thing and the bottom of my nose—I do…
Gordon Tries Fermented Fish | Gordon Ramsay: Uncharted
I’ve still got lots to learn, so I’m off to try a traditional Christmas dish that I hear tastes much better than it smells. Now trust me, I want to get the best of Christopher, and I’m up here to meet two guys who make this amazing delicacy that can only …
The procrastination cure you don't want to hear
I think one of the most common problems that people have is not that they don’t know what to do to dramatically move their life forward in a substantial way. Like, you know exactly what you need to do right now. There’s probably something that you’ve been…
Forest Flyover with Gisele | Years of Living Dangerously
[Music] This was good. Gross forest was not like that. What you can see now, this whole thing that we are seeing, that is dry land right now, was not here then. In 50 years, have this destruction. You can see forest, and next to a clear cut for a mile lo…
Differentiating rational functions | Derivative rules | AP Calculus AB | Khan Academy
Let’s say that Y is equal to five minus three X over x squared plus three X, and we want to figure out what is the derivative of Y with respect to X. Now, it might immediately jump out at you that look-look, Y is being defined as a rational expression her…
how to ACTUALLY CHANGE your life in 2023 (step by step guide)
We all experienced failure at some point in our lives. Maybe you didn’t get that promotion you were hoping for, or you didn’t accomplish a personal goal you set for yourself. But for some reason, when it gets closer to New Year’s, we tend to be more hopef…