yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Thomson's Plum Pudding Model of the Atom


2m read
·Nov 10, 2024

So the word atom means uncuttable, so the Greeks were thinking of it as a tiny hard sphere.

Phil: That's right.

Derek: And even up until the eighteen hundreds, that was the idea of an atom, the smallest piece of matter, a tiny hard sphere. But then we find out that that's not quite right, not quite. There were experiments in the eighteen hundreds that discovered the electron. JJ Thomson's experiments really worked out the electron was smaller than an atom, about 1000 times smaller than a hydrogen atom, and it was in all atoms.

Phil: That's right, not just hydrogen.

Derek: Whatever material he did his experiments on, he found there were electrons in them. There are electrons in all atoms. So I guess when you find something smaller than an atom, you need to propose a new model for the atom that actually has something smaller in it, some substructure.

Phil: That's right. So something like this. This is our model of the atom.

Phil: This is our model of the atom - in his day, it was known as the plum pudding model, but uh... here we have cherry tart.

Phil: Cherry tart, ok. So the idea being that we have an overall atom, usually pictured as spherical rather than 2D, but uh... but imbedded within it – and this is the important part – there are negative electrons represented by cherries, and they can come out. The overall atom is neutral, so that means that pudding part must be positive.

Derek: Now how would you get one of these electrons out of our pudding here? So electrons are negatively charged, so we'll need to put something very positive, which attracts electrons – a high voltage.

Derek: And that would have the effect of, say, like plucking a cherry out of the pudding.

Phil: That's pretty much it, yeah. You could do it kind of like that, so we're simulating what it would be like to put a positive charge up here.

Phil: That's right, that's right.

Derek: Pulling the electrons out of the atom, that's quite delicious.

Phil: Yeah! Well, that is the most delicious model of the atom, I've gotta say. So shall we uh, split the atom? Why don't you go ahead?

Phil: You want me to do it?

Derek: Yes! Who knows what could happen; a whole bunch of energy could be released.

Phil: Yeah, one, two, three...

More Articles

View All
How Peter Lynch DESTROYED the Market by 2,639%
Single most important thing to me in the stock market for anyone is to know what you own. If you have a desire to make money investing in the stock market, then you need to watch this video. And this is not coming from me; it’s coming from legendary inves…
Ethology and animal behavior
In this video, we will begin to explore the field of ethology, which is the study of animal behavior. Animal behavior and the word itself, ethology, it has its roots in the Greek ethos. You also might be familiar with the word ethics. Ethos and ethics, yo…
Identifying scaled copies
What we’re going to do in this video is look at pairs of figures and see if they are scaled copies of each other. So for example, in this diagram, is figure B a scaled version of figure A? Pause the video and see if you can figure that out. There are mu…
How To Get Rich According To Robert Kiyosaki
There are a million ways to make $1,000,000. And this is how Robert Kiyosaki does it. Robert Kiyosaki is a financial educator, entrepreneur, and the author of Rich Dad, Poor Dad, one of the best-selling personal finance books of all time. He’s challenged …
LearnStorm Growth Mindset: Khan Academy's economics content creator on learning strategies
My name is Melanie Fox. I create the AP Macroeconomics and AP Microeconomics content for Khan Academy. Well, if you don’t develop that mindset and you say, “I can’t overcome this,” this barrier, you’ve just made that barrier permanent for yourself. For …
Watch: What It’s Like to Read Lips | Short Film Showcase
So, when I was really young, probably kindergarten or first grade, I have a much older brother, and we’d go out to recess. There was this older guy; he might have been in like fifth or sixth grade. They’d always used to pick on us, and I didn’t really kno…