yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Undefined limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out the limit of x over natural log of x as x approaches one. Like always, pause this video and see if you can figure it out on your own.

Well, we know from our limit properties this is going to be the same thing as the limit as x approaches one of x over the limit, the limit as x approaches one of the natural log of x.

Now, this top limit, the one I have in magenta, this is pretty straightforward. If we had the graph of y equals x, that would be continuous everywhere; it's defined for all real numbers and it's continuous at all real numbers. So, if it's continuous, the limit as x approaches one of x is just going to be this evaluated at x equals one.

So, this is just going to be one. We just put a one in for this x, so the numerator here would just evaluate to a one. Then the denominator, natural log of x, is not defined for all x's and therefore it isn't continuous everywhere. But it is continuous at x = 1.

Since it is continuous at x = 1, then the limit here is just going to be the natural log evaluated at x = 1. So this is just going to be the natural log, the natural log of one, which of course is zero.

e to the 0 power is 1, so this is all going to be equal to, this is going to be equal to, we just evaluate it: 1 over 0.

Now we face a bit of a conundrum. 1/0 is not defined. If it was 0 over 0, we wouldn't necessarily be done yet; that's an indeterminate form. As we will learn in the future, there are tools we can apply when we're trying to find limits and we evaluate it like this and we get 0 over 0.

But 1 over 0, this is undefined, which tells us that this limit does not exist. So, does not exist, and we are done.

More Articles

View All
15 Costliest Mistakes Billionaires (and YOU!) Make
Billionaires, they’re actually just like you. You’re one successful adventure away from claiming it, and they are one big mistake away from losing everything. We all make the same mistakes, but the bigger your bank account, the harder your fall. So, you s…
Give Society What It Doesn't Know How to Get
You’re not going to get rich renting out your time, but you say that you will get rich by giving society what it wants but does not yet know how to get at scale. That’s right. So essentially, I could… We talked about before, money is IOU’s from society sa…
Solve by completing the square: Non-integer solutions | Algebra I | Khan Academy
Let’s say we’re told that zero is equal to x squared plus six x plus three. What is an x, or what our x is that would satisfy this equation? Pause this video and try to figure it out. All right, now let’s work through it together. So the first thing that…
How I Save 100% Of My Income
What’s up you guys? It’s Graham here. Sir, yes, the Tyler you read is correct. For the last several years, I have been able to save 100 percent of my income. Now, let me explain because I don’t live in a cardboard box off the one-on-one freeway. I don’t e…
Warren Buffett's Advice for Investors for 2024
I don’t know if you guys have noticed, but Warren Buffett has kept very quiet over the past six months. No media interviews, very few changes to his portfolio. The guy has been keeping well out of the spotlight. So much so that when his longtime business …
Mark Zuckerberg : How to Build the Future
Welcome to How to Build the Future Today. Our guest is Mark Zuckerberg. Uh, Mark, you have built one of the most influential companies in the history of the world, so we are especially excited that you are here. I’m not sure where to go from there. Um, wh…