yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Undefined limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out the limit of x over natural log of x as x approaches one. Like always, pause this video and see if you can figure it out on your own.

Well, we know from our limit properties this is going to be the same thing as the limit as x approaches one of x over the limit, the limit as x approaches one of the natural log of x.

Now, this top limit, the one I have in magenta, this is pretty straightforward. If we had the graph of y equals x, that would be continuous everywhere; it's defined for all real numbers and it's continuous at all real numbers. So, if it's continuous, the limit as x approaches one of x is just going to be this evaluated at x equals one.

So, this is just going to be one. We just put a one in for this x, so the numerator here would just evaluate to a one. Then the denominator, natural log of x, is not defined for all x's and therefore it isn't continuous everywhere. But it is continuous at x = 1.

Since it is continuous at x = 1, then the limit here is just going to be the natural log evaluated at x = 1. So this is just going to be the natural log, the natural log of one, which of course is zero.

e to the 0 power is 1, so this is all going to be equal to, this is going to be equal to, we just evaluate it: 1 over 0.

Now we face a bit of a conundrum. 1/0 is not defined. If it was 0 over 0, we wouldn't necessarily be done yet; that's an indeterminate form. As we will learn in the future, there are tools we can apply when we're trying to find limits and we evaluate it like this and we get 0 over 0.

But 1 over 0, this is undefined, which tells us that this limit does not exist. So, does not exist, and we are done.

More Articles

View All
Organism growth and the environment | Middle school biology | Khan Academy
Hey, have you ever seen this kind of plant before? It’s called a dandelion. If you live in a tropical climate, it might be unfamiliar, but if you live in a more temperate zone, you’ll probably recognize it, as it’s a very common plant. Dandelions make yel…
Khan Stories: Claudia
My name’s Claudia and I’m currently a freshman at MIT. I’m from South Florida and now my journey continues here. My family is from the Azores Islands, which are in the middle of the Atlantic. Just knowing that where my family comes from and the lack of e…
Hedonism: The Pursuit of Happiness
In 2012, Drake made a song titled “The Motto,” but what most people remember from it is “YOLO.” YOLO tells you to live in the moment, enjoy life you have today, and not worry too much about tomorrow, because at the end of the day, you only live once. Whil…
Derivatives of inverse functions: from equation | AP Calculus AB | Khan Academy
Let ( F(x) ) be equal to ( 12x^3 + 3x - 4 ). Let ( H ) be the inverse of ( F ). Notice that ( F(-2) ) is equal to (-14) and then they’re asking us what is ( H’(-14) ). If you’re not familiar with how functions and their derivatives relate to their invers…
The Rainiest Place On Earth
[Derek] This is the world’s largest rainfall simulator, located in Tsukuba, Japan. Now, I know that it just looks like a warehouse with a lot of sprinklers, but this building is incredibly important. The science conducted here keeps tens of millions of pe…
When your self-worth depends on what you achieve
When Googling someone’s name, you’re often directed to social media platforms like Facebook, Instagram, and LinkedIn for more information about this individual. But what do these platforms actually tell you? They reveal plenty about achievements, job titl…