yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Undefined limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out the limit of x over natural log of x as x approaches one. Like always, pause this video and see if you can figure it out on your own.

Well, we know from our limit properties this is going to be the same thing as the limit as x approaches one of x over the limit, the limit as x approaches one of the natural log of x.

Now, this top limit, the one I have in magenta, this is pretty straightforward. If we had the graph of y equals x, that would be continuous everywhere; it's defined for all real numbers and it's continuous at all real numbers. So, if it's continuous, the limit as x approaches one of x is just going to be this evaluated at x equals one.

So, this is just going to be one. We just put a one in for this x, so the numerator here would just evaluate to a one. Then the denominator, natural log of x, is not defined for all x's and therefore it isn't continuous everywhere. But it is continuous at x = 1.

Since it is continuous at x = 1, then the limit here is just going to be the natural log evaluated at x = 1. So this is just going to be the natural log, the natural log of one, which of course is zero.

e to the 0 power is 1, so this is all going to be equal to, this is going to be equal to, we just evaluate it: 1 over 0.

Now we face a bit of a conundrum. 1/0 is not defined. If it was 0 over 0, we wouldn't necessarily be done yet; that's an indeterminate form. As we will learn in the future, there are tools we can apply when we're trying to find limits and we evaluate it like this and we get 0 over 0.

But 1 over 0, this is undefined, which tells us that this limit does not exist. So, does not exist, and we are done.

More Articles

View All
Bad Investing Mistakes That Make Me Cringe...
Hey guys, welcome back to the channel! In this video, we’re going to be talking about three specific investing mistakes that, in all honesty, these ones like really make me cringe. Like, not gonna lie! And in all honesty, I see people make these mistakes …
Mistakes when finding inflection points: second derivative undefined | AP Calculus AB | Khan Academy
Robert was asked to find where ( g(x) ), which is equal to the cube root of ( x ), has inflection points. This is his solution, and then later we are asked if Robert’s work is correct. If not, what’s his mistake? So pause this video and try to figure it o…
Redrawing the Map | Epcot Becoming Episode 1 | National Geographic
EPCOT really has been changing since the very beginning. But no matter where you look today, there’s still going to be vestiges of those hallmarks of early EPCOT. EPCOT was Disney’s first non-castle park when it opened in 1982. In 1982, this was the very …
David Crosby is Star Struck | StarTalk
So we established that there’s an entire Geek Side to David Crosby that I never knew until that moment. So I wanted to know, was he able, did he care, did he want to fold this geekitude into his music? So I asked, “What has his passion for science inspir…
Revealing My Entire $6 Million Investment Portfolio | 29 Years Old
What’s up you guys, it’s Graham here. So, a few months ago, I made a video breaking down in graphic detail each of my seven income sources: how I built them up, what’s involved in running them, and then most importantly, the question everyone wants to kno…
Course Mastery Sal (intro only)
Hi teachers, this is Sal Khan here from Khan Academy, and welcome to Course Mastery. So, back in 1984, famous education researcher Benjamin Bloom published the famous Two Sigma study, where he showed that a student who works in a mastery learning framewo…