yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Evaluating quotient of fractional exponents | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can figure out what 256 to the 47th power divided by 2 to the 47th power is, and like always, pause the video and see if you can figure this out.

All right, let's work through this together. At first, you might find this kind of daunting, especially when you see something like 2 to the 47th power. Is that even, that's not going to be a whole number? How do I do this, especially without a calculator? I should have said do this without a calculator, but then the key is to see that we can use our exponent properties to simplify this a little bit so that we can do this on paper.

The main property that might jump out at you is if I have something, if I have x to the a power over y to the a power, this is the same thing as (x/y) to the a power. In our situation right over here, 256 would be x, 2 would be y, and then a is 47. So we can rewrite this; this is going to be equal to 256 over 2 to the 47th power.

This is nice; we're already able to simplify this because we know 256 divided by 2 is 128. So this is 128 to the 47th power. Now, this might also seem a little bit difficult. How do I raise 128 to a fractional power? But we just have to remind ourselves this is the same thing as 128 to the 17th power then raised to the 4th power. We could also view it the other way around. We could say that this is also 128 to the 4th power and then raise that to the 17th, but multiplying 128 four times, that's going to be very computationally intensive. Then we have to find the seventh root of that; that seems pretty difficult, so we don't want to go in that way.

But if we can get the smaller number first, what is 128 to the 17th power? Then that might be easier to raise to the fourth power. Now when you look at this and knowing that probably, uh, the question writer in this case—I'm the person who presented with you—is telling you that you're not going to use a calculator, it's a pretty good clue that, all right, this is probably going to be something that I can figure out on my own.

You might recognize 128 as a power of two, and maybe 2 to the 7th is 128. We can verify that. So let's see, 2 to the 1 is 2, 4, 8, 16, 32, 64, 128. 2 * 2 is 4, * 2 is 8, * 2 is 16, * 2 is 32, * 2 is 64, * 2 is 128. So 2 to the 7th power is equal to 128, or another way of saying this exact same thing is that 128 is equal to 2 to the 7th power.

Another way to say this is 128 to the 17th power is equal to 2, or you could even say that the 7th root of 128 is equal to 2. So we can simplify this; this is 2. So our whole expression is now just 2 to the 4th power. Well, that's just 2 * 2 * 2 * 2, so that's 2 to the 4th power, which is just going to be equal to 16. That's 2 * 2 * 2 * 2 right over there, and so we're done.

This crazy complicated-looking expression has simplified to 16.

More Articles

View All
Warren Buffett: 3 Powerful Lessons for Investors
Warren Buffett, CEO of Berkshire Hathaway, is widely regarded as one of the most successful investors in the world, having returned 3.7 million percent since he took the reins of the struggling textile manufacturer back in 1965. Interestingly, since 1965,…
The Seventh Amendment | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy. Today, we’re learning more about the Seventh Amendment to the U.S. Constitution. The Seventh Amendment guarantees the right to juries in civil cases when the value in controversy is greater than twenty dollars. To learn…
Polynomials intro | Mathematics II | High School Math | Khan Academy
Let’s explore the notion of a polynomial. So, this seems like a very complicated word, but if you break it down, it’ll start to make sense, especially when we start to see examples of polynomials. So, the first part of this word, let me underline it: we …
Rare 1920s Footage: All-Black Towns Living the American Dream | National Geographic
And Oklahoma is a unique space in terms of the number of African-American towns that were established. Some suggest upwards of 50 African-American towns between 1924 and 1928. Reverend S.S. Jones was going around documenting this sort of self-determined, …
Using text features to locate information | Reading | Khan Academy
Hello readers! Today we’re going to talk about how to use text features to find information in a piece of nonfiction writing, like a textbook, an encyclopedia entry, or a news article. Information in these texts is organized with a specific purpose in min…
Worked example: separable differential equations | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some practice finding general solutions to separable differential equations. So, let’s say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you c…