yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: changing units | High School Math | Khan Academy


2m read
·Nov 11, 2024

The amount of carbon dioxide (CO2) in the atmosphere increases rapidly as we continue to rely on fossil fuels. The relationship between the elapsed time T in decades—let me highlight that because that's not a typical unit—but in decades since CO2 levels were first measured and the total amount of CO2 in the atmosphere. So, the amount of CO2 A of D sub T in parts per million is modeled by the following function.

So, the amount of CO2 as a function of how many decades have passed is going to be this. So, T is in decades in this model right over here. Complete the following sentence about the yearly rate of change. The yearly rate of change in the amount of CO2 in the atmosphere, round your answer to two decimal places.

Every year, the amount of CO2 in the atmosphere increases by a factor of... If they said every decade, well this would be pretty straightforward. Every decade you increase T by one, and so you're going to multiply by 1.06 again. So, every decade you increase by a factor of 1.06. But what about every year?

I always find it helpful to make a bit of a table just so we can really digest things properly. So, I'll say T and I'll say A of T. So when T is equal to zero—so at the beginning of our study—well, 1.06 to the zero power is just going to be one. You have 3155 parts per million.

So, what's a year later? A year later is going to be a tenth of a decade—remember T is in decades—so a year later is 0.1 of a decade. So 0.1 of a decade later, what is going to be the amount of carbon we have? Well, it's going to be 3155 times 1.06 to the 0.1 power. And what is that going to be? Well, let's see.

If we calculate it, 1.06 to the 0.1 power is equal to approximately 1.58. So, this is the same thing as 3155 * 1.58, and I should say approximately equal to... I did a little bit of rounding there. So after another year—now we're at T equals 0.2, we're at 0.2 of a decade—where are we going to be?

We're going to be at 3155 * 1.06 to the 0.2, which is the same thing as 3155 * (1.06 to the 0.1) raised to the 2 power. So we're going to multiply by this 1.06 to the 1/10 power again, or we're going to multiply by 1.58 a second time.

Another way to think about it, if we want to reformulate this model in terms of years, for each year of T, it's going to be 3155. Now, our common ratio wouldn't be 1.06; it'd be 1.06 to the 0.1 power, or approximately 1.58. Then we would raise that; now T would be in years.

Now, here it is in decades, and I could say approximately since this is rounded a little bit. So every year, the amount of CO2 in the atmosphere increases by a factor of... I could say 1.06 to the 0.1 power. But if I'm rounding my answer to two decimal places, well, we're going to increase by 1.58. In fact, they should—they increase by a factor of... I'm guessing they want more than two decimal places. Well, anyway, this right over here is five significant digits, but I'll leave it there.

More Articles

View All
The best AI founders in the world are moving here
Why was San Francisco so definitively the center of the tech industry? Why did it all like agglomerate here? San Francisco is the place in the world where you can manufacture luck. Within a month of us moving in, they launched Twitter. I was like, “Wow, t…
This Low-Cost Robot Can Help You Explore the Ocean | Nat Geo Live
DAVID LANG: A few years ago, I had this big epiphany. How do we shift from just something we’re building together to all of these ways that we could be exploring together? We’re building the largest ocean observation network in the world and we’re doing i…
Curvature of a cycloid
So let’s do another curvature example. This time, I’ll just take a two-dimensional curve, so it’ll have two different components: x of t and y of t. The specific components here will be t minus the sine of t, t minus sine of t, and then one minus cosine o…
First Ascent of a Sky Island | Podcast | Overheard at National Geographic
El Dorado, the legendary city covered in gold, doesn’t seem like a place that could really exist. But then, neither did tapuis in the Guyana Highlands, a remote region of South American rainforest. Flat mountains with vertical walls rise high above the fo…
Funding Is an Outcome of Building a Good Business - Porter Braswell of Jopwell
Maybe the best place to start would be, let’s explain what job well is, and then we can kind of go back in time and get to where we are now. Cool, cool. So also thanks for coming in. Absolutely my pleasure, thank you for having me. Appreciate it. Yeah, s…
Shower Thoughts: Space Is Weird
The universe is a mind-boggling place. Actually, I’m not even sure I can call it a place. NASA says the universe is everything, but what they really mean is that it contains everything— all of space, energy, time, and matter, like you and me. But there’s …