yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: changing units | High School Math | Khan Academy


2m read
·Nov 11, 2024

The amount of carbon dioxide (CO2) in the atmosphere increases rapidly as we continue to rely on fossil fuels. The relationship between the elapsed time T in decades—let me highlight that because that's not a typical unit—but in decades since CO2 levels were first measured and the total amount of CO2 in the atmosphere. So, the amount of CO2 A of D sub T in parts per million is modeled by the following function.

So, the amount of CO2 as a function of how many decades have passed is going to be this. So, T is in decades in this model right over here. Complete the following sentence about the yearly rate of change. The yearly rate of change in the amount of CO2 in the atmosphere, round your answer to two decimal places.

Every year, the amount of CO2 in the atmosphere increases by a factor of... If they said every decade, well this would be pretty straightforward. Every decade you increase T by one, and so you're going to multiply by 1.06 again. So, every decade you increase by a factor of 1.06. But what about every year?

I always find it helpful to make a bit of a table just so we can really digest things properly. So, I'll say T and I'll say A of T. So when T is equal to zero—so at the beginning of our study—well, 1.06 to the zero power is just going to be one. You have 3155 parts per million.

So, what's a year later? A year later is going to be a tenth of a decade—remember T is in decades—so a year later is 0.1 of a decade. So 0.1 of a decade later, what is going to be the amount of carbon we have? Well, it's going to be 3155 times 1.06 to the 0.1 power. And what is that going to be? Well, let's see.

If we calculate it, 1.06 to the 0.1 power is equal to approximately 1.58. So, this is the same thing as 3155 * 1.58, and I should say approximately equal to... I did a little bit of rounding there. So after another year—now we're at T equals 0.2, we're at 0.2 of a decade—where are we going to be?

We're going to be at 3155 * 1.06 to the 0.2, which is the same thing as 3155 * (1.06 to the 0.1) raised to the 2 power. So we're going to multiply by this 1.06 to the 1/10 power again, or we're going to multiply by 1.58 a second time.

Another way to think about it, if we want to reformulate this model in terms of years, for each year of T, it's going to be 3155. Now, our common ratio wouldn't be 1.06; it'd be 1.06 to the 0.1 power, or approximately 1.58. Then we would raise that; now T would be in years.

Now, here it is in decades, and I could say approximately since this is rounded a little bit. So every year, the amount of CO2 in the atmosphere increases by a factor of... I could say 1.06 to the 0.1 power. But if I'm rounding my answer to two decimal places, well, we're going to increase by 1.58. In fact, they should—they increase by a factor of... I'm guessing they want more than two decimal places. Well, anyway, this right over here is five significant digits, but I'll leave it there.

More Articles

View All
Galaxies and gravity | Earth in space | Middle school Earth and space science | Khan Academy
Hello everyone! Today we’re going to be talking about galaxies and gravity. We know the Earth is a planet that is in orbit around the Sun. This is called the heliocentric model, and the solar system is an enormous space for us, encompassing every place th…
Simone Giertz on Her Robots and Returning to Work After Brain Surgery
All right, Simone, yecch! Welcome to the podcast. Hey, thanks for having me! How you doing? I’m great! I’m really excited to, like, be invited to Y Combinator. I’ve followed you for a very long time, and I’m like, this is where it happens. Yeah, I wou…
After the Avalanche: Life as an Adventure Photographer With PTSD (Part 1) | Nat Geo Live!
I’m gonna start before any adventures for the magazine, before I was out in Antarctica, before any of this happened. I’m gonna start by telling you how cool I was as a kid, because honestly, I was pretty cool. I was the first hipster ever, sideways trucke…
Laks Srini on Making Homeownership in Reach with ZeroDown
Bucks, rainy welcome to the podcast! Thanks, thanks for having me here. So you are the CTO and the co-founder of Zero Down. What does Zero Down do? So, we help people buy houses. We think, even in a place like the Bay Area, people with good jobs and hea…
Intro to forces (part 1) | Physics | Khan Academy
A force is just a push or a pull, that’s it. But in this video, we’re going to explore the different kinds of pushes and pulls that we will encounter in our daily lives. So let’s start with an example. Imagine you are pulling a chair in your living room u…
I Vacuum Venom from the World's Deadliest Spider
[Derek] For some people, this room might be the scariest place on earth. Behind these black curtains are deadly spiders, (tense ominous music) hundreds of them. And what we’re gonna do is poke them, make them angry, and then suction the venom that appears…