yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: changing units | High School Math | Khan Academy


2m read
·Nov 11, 2024

The amount of carbon dioxide (CO2) in the atmosphere increases rapidly as we continue to rely on fossil fuels. The relationship between the elapsed time T in decades—let me highlight that because that's not a typical unit—but in decades since CO2 levels were first measured and the total amount of CO2 in the atmosphere. So, the amount of CO2 A of D sub T in parts per million is modeled by the following function.

So, the amount of CO2 as a function of how many decades have passed is going to be this. So, T is in decades in this model right over here. Complete the following sentence about the yearly rate of change. The yearly rate of change in the amount of CO2 in the atmosphere, round your answer to two decimal places.

Every year, the amount of CO2 in the atmosphere increases by a factor of... If they said every decade, well this would be pretty straightforward. Every decade you increase T by one, and so you're going to multiply by 1.06 again. So, every decade you increase by a factor of 1.06. But what about every year?

I always find it helpful to make a bit of a table just so we can really digest things properly. So, I'll say T and I'll say A of T. So when T is equal to zero—so at the beginning of our study—well, 1.06 to the zero power is just going to be one. You have 3155 parts per million.

So, what's a year later? A year later is going to be a tenth of a decade—remember T is in decades—so a year later is 0.1 of a decade. So 0.1 of a decade later, what is going to be the amount of carbon we have? Well, it's going to be 3155 times 1.06 to the 0.1 power. And what is that going to be? Well, let's see.

If we calculate it, 1.06 to the 0.1 power is equal to approximately 1.58. So, this is the same thing as 3155 * 1.58, and I should say approximately equal to... I did a little bit of rounding there. So after another year—now we're at T equals 0.2, we're at 0.2 of a decade—where are we going to be?

We're going to be at 3155 * 1.06 to the 0.2, which is the same thing as 3155 * (1.06 to the 0.1) raised to the 2 power. So we're going to multiply by this 1.06 to the 1/10 power again, or we're going to multiply by 1.58 a second time.

Another way to think about it, if we want to reformulate this model in terms of years, for each year of T, it's going to be 3155. Now, our common ratio wouldn't be 1.06; it'd be 1.06 to the 0.1 power, or approximately 1.58. Then we would raise that; now T would be in years.

Now, here it is in decades, and I could say approximately since this is rounded a little bit. So every year, the amount of CO2 in the atmosphere increases by a factor of... I could say 1.06 to the 0.1 power. But if I'm rounding my answer to two decimal places, well, we're going to increase by 1.58. In fact, they should—they increase by a factor of... I'm guessing they want more than two decimal places. Well, anyway, this right over here is five significant digits, but I'll leave it there.

More Articles

View All
Limit of (1-cos(x))/x as x approaches 0 | Derivative rules | AP Calculus AB | Khan Academy
What we want to do in this video is figure out what the limit as ( x ) approaches ( z ) of ( \frac{1 - \cos(x)}{x} ) is equal to. We’re going to assume we know one thing ahead of time: we’re going to assume we know that the limit as ( x ) approaches ( 0 )…
George Ought to Help
Imagine you have a friend called George. You’ve been friends since childhood. Although you’re not as close as you were back then, you still see each other once in a while and get along very well. One day, you and George are approached by an old mutual fri…
Science Fair – Trailer | National Geographic
The winner in the category of Medicine, making it ties—that’s like the big thing. You kind of had that status of being in, like, the group I would say that a lot of people are jealous of. On deadlines, I’m awful. I wait until the deadline to start workin…
For the Love of the Climb | Explorer
[Music] I’ve always equated climbing, Alpine climbing, being in the mountains to, it sounds a little silly, but being in love. Sometimes it’s very uncomfortable; it makes you do crazy things. It can be very, very challenging, but at the end of the day, it…
Percent word problem examples
In a video game, Val scored 30 percent fewer points than Peta. Peta scored 1060 points. How many points did Val score? Pause this video and see if you can figure out how many points Val scored. All right, well now let’s do this together, and there’s a co…
The Bizarre Behavior of Rotating Bodies
I want to thank the sponsor of this episode, LastPass, which remembers your passwords so you don’t have to. More about them at the end of the show. What you are looking at is known as the Dzhanibekov effect, or the tennis racket theorem, or the intermedi…