yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting change in exponential models: changing units | High School Math | Khan Academy


2m read
·Nov 11, 2024

The amount of carbon dioxide (CO2) in the atmosphere increases rapidly as we continue to rely on fossil fuels. The relationship between the elapsed time T in decades—let me highlight that because that's not a typical unit—but in decades since CO2 levels were first measured and the total amount of CO2 in the atmosphere. So, the amount of CO2 A of D sub T in parts per million is modeled by the following function.

So, the amount of CO2 as a function of how many decades have passed is going to be this. So, T is in decades in this model right over here. Complete the following sentence about the yearly rate of change. The yearly rate of change in the amount of CO2 in the atmosphere, round your answer to two decimal places.

Every year, the amount of CO2 in the atmosphere increases by a factor of... If they said every decade, well this would be pretty straightforward. Every decade you increase T by one, and so you're going to multiply by 1.06 again. So, every decade you increase by a factor of 1.06. But what about every year?

I always find it helpful to make a bit of a table just so we can really digest things properly. So, I'll say T and I'll say A of T. So when T is equal to zero—so at the beginning of our study—well, 1.06 to the zero power is just going to be one. You have 3155 parts per million.

So, what's a year later? A year later is going to be a tenth of a decade—remember T is in decades—so a year later is 0.1 of a decade. So 0.1 of a decade later, what is going to be the amount of carbon we have? Well, it's going to be 3155 times 1.06 to the 0.1 power. And what is that going to be? Well, let's see.

If we calculate it, 1.06 to the 0.1 power is equal to approximately 1.58. So, this is the same thing as 3155 * 1.58, and I should say approximately equal to... I did a little bit of rounding there. So after another year—now we're at T equals 0.2, we're at 0.2 of a decade—where are we going to be?

We're going to be at 3155 * 1.06 to the 0.2, which is the same thing as 3155 * (1.06 to the 0.1) raised to the 2 power. So we're going to multiply by this 1.06 to the 1/10 power again, or we're going to multiply by 1.58 a second time.

Another way to think about it, if we want to reformulate this model in terms of years, for each year of T, it's going to be 3155. Now, our common ratio wouldn't be 1.06; it'd be 1.06 to the 0.1 power, or approximately 1.58. Then we would raise that; now T would be in years.

Now, here it is in decades, and I could say approximately since this is rounded a little bit. So every year, the amount of CO2 in the atmosphere increases by a factor of... I could say 1.06 to the 0.1 power. But if I'm rounding my answer to two decimal places, well, we're going to increase by 1.58. In fact, they should—they increase by a factor of... I'm guessing they want more than two decimal places. Well, anyway, this right over here is five significant digits, but I'll leave it there.

More Articles

View All
Why Coca Cola Still Spends Billions On Ads
For over a century, Coca-Cola has been selling the most successful product in the history of humankind. Since its humble beginnings in 1886, when John Pemberton first brewed a mixture of cocoa leaves and cola nuts, Coca-Cola has undergone a remarkable tra…
Primary productivity in ecosystems| Matter and Energy Flow| AP Environmental Science| Khan Academy
In this video, we’re going to talk about energy, and in particular, we’re going to talk about the energy of life. The energy that I need to live, and all of us need to live. The energy you need to think, the energy I’m using to make this video right now. …
How to Pee in Space | StarTalk
So we have to ask Mike, “Yes, have you ever peed in your pants in space?” “Yes, we didn’t call it the UCD; we called it the MAG.” “The MAG? The Maximum Absorbency Garment? It was a diaper?” “Diaper! Yes, we wore a diaper on launch and entry, and while …
Can Silence Actually Drive You Crazy?
I am going to scream as loud as I can, and I am going to keep screaming as loud as I can while I spin around. I will keep going until my breath runs out. Great. You ready? Yeah. Ok. [Screams] That was outstanding. Thank you. Thank you. The quietest …
The Dark Secrets of the Manhattan Project
In 1946, a 41-year-old hairdresser named Janice Shot came to A Strong Memorial Hospital in Rochester, New York, to be treated for scleroderma. It were a connective tissue condition. She had escaped the violence against Jews in Belarus during the Second Wo…
Warren Buffett: How to Invest Small Amounts of Money
So it’s no secret that if you’re watching this video, you probably want to be a billionaire just like Warren Buffett. But believe it or not, if you have a relatively small amount of money in your portfolio, you actually have a huge advantage over Buffett …