yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Column chromatography | Intermolecular forces and properties | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

  • In our previous video, we talked about Thin Layer Chromatography. It was this technique used to figure out how many things you have in a sample or maybe say the relative properties, say the relative polarity of the things that you have in the sample.

And so what you do is you put a sample on typically a silica gel, which is the stationary phase, and then you put a mobile phase down here, which in this case might be less polar. It's going to move its way up the silica gel, and as it does, you can imagine it's going to interact with your original sample.

Parts of the original sample are going to move up with your mobile phase, and different parts are going to be attracted to that mobile phase and not attracted to the silica gel to different degrees, you can imagine. If there's a part of your original sample that is more polar, then it's going to be harder to move, because it's going to be attracted to the stationary phase and less attracted to the mobile phase, and so it's going to move less.

This might be the more polar part of your sample as it moves from its original location. The part that's less polar? Well, it's not going to be as attracted to the stationary phase, and so it's going to be more dissolvable in the less polar mobile phase, and so it will go further.

This will be the less polar part of your original sample, and so you can see that separation, and you could come up with other insights that we talk about in that other video. In this video, I'm gonna introduce you to a very, very, very similar idea. It's just that things are moving in a different direction, and that is the notion of Column Chromatography.

What you do in Column Chromatography, just like Thin Layer Chromatography, is let's say you have some type of vile, some type of a column. I guess I could say you'll typically see it with a little tap drawn down here because you might wanna see what comes out through the bottom. But what you do is you fill it with the stationary phase, which once again is oftentimes silica gel.

So this is stationary phase, stationary phase, and if it's silica gel in this case, silica gel, it doesn't have to be silica gel, but that's pretty common. This is going to be very polar, so let me write this, very polar. Then, you put some of your sample at the top here. So that's your original sample; you put it at the top, and then you have some mobile phase, the solvent that you're going to put on top of that.

So you're gonna do something like that, and what do you think is going to happen? Well, your mobile phase is going to start moving its way down through your stationary phase, and it's going to interact with your sample. Now, what's going to happen to the more polar components of your sample?

The more polar components of your sample are going to be more attracted to the stationary phase, less attracted to the mobile phase, so they're gonna move less. The more polar parts of your sample might only go, maybe that far, while the less polar parts of your sample, they'll move. There'll be less attracted to your stationary phase, and they'll move with your mobile phase more, and so you might have they might move down, down over there.

The big takeaway, the difference between the two, is just the direction you're moving in. In Thin Layer Chromatography, your more polar thing is the lower dot, while in Column Chromatography, your more polar thing is the upper layer right over here, this purple area right over here.

And of course, all of that depends on the polarity of your stationary phase and the relative polarity of your mobile phase, but what I just showed you is a typical situation. So keep in mind whether you're looking at Thin Layer Chromatography or Column Chromatography, which to pay attention to the direction.

More Articles

View All
TIL: Hummingbirds Are the World's Hungriest Birds | Today I Learned
If you were to use energy as quickly as a hummingbird, you’d have to eat a fridge full of food or about 300 hamburgers every day in order to survive. They use energy so quickly as they fly, so, so fast. A lot of the flowers they feed on are really delicat…
Principles for Dealing with the Changing World Order (5-minute Version) by Ray Dalio
I studied the 10 most powerful Empires over the last 500 years and the last three Reserve currencies. It took me through the rise and decline of the Dutch Empire and the Guilder, the British Empire and the Pound, the rise and early decline in the United S…
The source of life for the Okavango | National Geographic
The Okavango Delta is a biodiversity hotspot in the heart of one of Africa’s most important freshwater systems. Its pulse is maintained by a river structure that begins deep in the Angolan highlands, in an area locals call Lisima Iya Mwono, the source of …
Safari Live - Day 344 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon everybody! Welcome once again to the Sunset Safari down in Juma, South Africa, where we sit with a few lions…
This Is The World's First Geared CVT and It Will Blow Your Mind - Ratio Zero Transmission
Today I have the privilege to hold in my hands something very special. This is the world’s first operational, gear-based, continuously variable transmission or CVT. And before I explain how this piece of absolute mechanical poetry actually works, allow me…
The End of The Universe
The universe was really small and dense at one point, and then all of a sudden it wasn’t. But whoa, whoa, wait a minute! Let’s rewind and figure out what happened right here. This is because of two things: entropy and dark energy. Put it simply, entropy …