yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Lewis diagram of the cyanide ion (CN⁻) | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

In this video, we're going to try to get more practice constructing Lewis diagrams, and we're going to try to do that for a cyanide anion. So, this is interesting; this is the first time we're constructing a Lewis diagram for an ion. So, pause this video and see if you can have a go at that.

All right, now let's do this together. So, we've already seen in many videos the first step is to essentially count the total valence electrons that we're dealing with. The reason why we do that is to make sure that we're allocating all the valence electrons. To help us, we can look at a periodic table of elements. You might already know that carbon has one, two, three, four valence electrons in that second shell; it's in the second period.

So, you have four valence electrons from carbon. Nitrogen has one, two, three, four, five valence electrons in its second shell; it's in that second period. The valence electrons from a neutral carbon and a neutral nitrogen free atom would be a total of nine valence electrons. But we are not done yet because this is not a neutral molecule; we have a negative charge here, it is an anion, has a negative one charge. So, because of that negative one, we can think about it having an extra valence electron. So, let's add a valence electron here. Why did we do it? Because of this negative charge.

So, we're dealing with a total of 10 valence electrons. Now, the next step is to try to draw single bonds, try single bonds, and identify a central atom. Now, we only have two atoms here, so really neither feels central. So, let me just put a carbon and a nitrogen next to each other here, and then let me draw one single bond. So, by drawing that one single bond, I have now accounted for two valence electrons.

Now I am left with eight valence electrons, and so that's the next step: allocate remaining valence electrons, allocate valence electrons. So, let me start with the more electronegative; let's try to get nitrogen to eight. It already has two, so let's give it three more lone pairs. So, we have two, four, six, eight. I have just used up six of these remaining valence electrons, so minus six means I have two left to allocate.

So, let me give carbon two valence electrons like that, and there I have used up all of my valence electrons. Now, let's see how happy everyone is. Nitrogen has eight valence electrons hanging around: two, four, six, eight. But carbon only has four: two and four. So, this is where we think about whether we want to have some extra bonds, extra bonds, or higher-order bonds.

So, how can we give carbon more valence electrons? Well, what we could do is take some of these lone pairs around nitrogen and then use them to turn this single covalent bond into a higher-order bond. So, let's see if we were to take these two and turn it into another covalent bond, what is going to happen?

Let me erase all of these, and then I'll just draw another covalent bond. So, nitrogen still has eight electrons hanging around. Carbon now has six, so maybe we can do that again. So, let me erase these two characters; let me erase these two characters and make another covalent bond out of them.

So, let me make a covalent bond out of them, and so now what's going on? Carbon has two, four, six, eight valence electrons hanging around, and nitrogen has two, four, six, eight valence electrons hanging around. So, this is looking pretty good. But are we done yet? The simple answer is no; we still haven't represented this negative charge in our Lewis diagram.

The way that we would do that is to say, "Hey, this entire molecule," you put brackets around it, "has a negative charge." And now we're done. We've allocated all of our valence electrons, we have our octet rule on all of our atoms that are not hydrogen (there's no hydrogen here), and we're showing that this indeed is an anion. And now we are done.

More Articles

View All
Why Earth Is A Prison and How To Escape It
We are prisoners on Earth. The Universe taunts us by showing all the places we can’t ever visit. However, if our species wants to have a long-term future, we have to escape our prison. But what is keeping us here in the first place? Turns out, we owe the …
David Lee at Startup School NY 2014
Right now we have a pretty special investor here. All right, now David Lee has done a thing or two with investing over the years. He is one of the founding members, one of the founding partners rather of SVAngel, a little investment outfit you may have he…
fly with me from CA to AZ | tiny airplane, big adventure! day 1
Hi, I’m Stevie, and this is my 1949 Cessna 140A that we’re going to be flying all the way from California to Wisconsin for EAA Air Venture. If you’re not familiar, Air Venture is like the pilot event every single year. 600,000 people and over 10,000 plane…
After PMF: People, Customers, Sales by Mathilde Collin
Following on from Paul’s talk about some of the ways to think about becoming, or what it takes to become, or whether you might believe you might become a hundred billion dollar business, I am going to have a conversation with Mathilde, who is in the proce…
A Man Among Wolves: Photographing Yellowstone’s Iconic Predators | National Geographic
This is so cool! I was in Yellowstone for a year and a half. My job was to shed light on wolf behavior in a natural landscape. A lot of times, wolves get persecuted, and this was an opportunity for me to just show wolves for what they were; for being larg…
NEW MAJOR CHANGES FOR ANYONE WITH A CREDIT CARD (DETAILS)
What’s up guys, it’s Graham here. So, in the middle of this whole crisis, we got to talk about something slightly more unconventional here, and to do that, it’s gonna require that we get back to the roots and the basics of this channel, and that would be …