yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Lewis diagram of the cyanide ion (CN⁻) | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

In this video, we're going to try to get more practice constructing Lewis diagrams, and we're going to try to do that for a cyanide anion. So, this is interesting; this is the first time we're constructing a Lewis diagram for an ion. So, pause this video and see if you can have a go at that.

All right, now let's do this together. So, we've already seen in many videos the first step is to essentially count the total valence electrons that we're dealing with. The reason why we do that is to make sure that we're allocating all the valence electrons. To help us, we can look at a periodic table of elements. You might already know that carbon has one, two, three, four valence electrons in that second shell; it's in the second period.

So, you have four valence electrons from carbon. Nitrogen has one, two, three, four, five valence electrons in its second shell; it's in that second period. The valence electrons from a neutral carbon and a neutral nitrogen free atom would be a total of nine valence electrons. But we are not done yet because this is not a neutral molecule; we have a negative charge here, it is an anion, has a negative one charge. So, because of that negative one, we can think about it having an extra valence electron. So, let's add a valence electron here. Why did we do it? Because of this negative charge.

So, we're dealing with a total of 10 valence electrons. Now, the next step is to try to draw single bonds, try single bonds, and identify a central atom. Now, we only have two atoms here, so really neither feels central. So, let me just put a carbon and a nitrogen next to each other here, and then let me draw one single bond. So, by drawing that one single bond, I have now accounted for two valence electrons.

Now I am left with eight valence electrons, and so that's the next step: allocate remaining valence electrons, allocate valence electrons. So, let me start with the more electronegative; let's try to get nitrogen to eight. It already has two, so let's give it three more lone pairs. So, we have two, four, six, eight. I have just used up six of these remaining valence electrons, so minus six means I have two left to allocate.

So, let me give carbon two valence electrons like that, and there I have used up all of my valence electrons. Now, let's see how happy everyone is. Nitrogen has eight valence electrons hanging around: two, four, six, eight. But carbon only has four: two and four. So, this is where we think about whether we want to have some extra bonds, extra bonds, or higher-order bonds.

So, how can we give carbon more valence electrons? Well, what we could do is take some of these lone pairs around nitrogen and then use them to turn this single covalent bond into a higher-order bond. So, let's see if we were to take these two and turn it into another covalent bond, what is going to happen?

Let me erase all of these, and then I'll just draw another covalent bond. So, nitrogen still has eight electrons hanging around. Carbon now has six, so maybe we can do that again. So, let me erase these two characters; let me erase these two characters and make another covalent bond out of them.

So, let me make a covalent bond out of them, and so now what's going on? Carbon has two, four, six, eight valence electrons hanging around, and nitrogen has two, four, six, eight valence electrons hanging around. So, this is looking pretty good. But are we done yet? The simple answer is no; we still haven't represented this negative charge in our Lewis diagram.

The way that we would do that is to say, "Hey, this entire molecule," you put brackets around it, "has a negative charge." And now we're done. We've allocated all of our valence electrons, we have our octet rule on all of our atoms that are not hydrogen (there's no hydrogen here), and we're showing that this indeed is an anion. And now we are done.

More Articles

View All
Khan Academy Ed Talks with Professor Thomas Guskey, PhD
Hello and welcome to Ed Talks with Khan Academy. I’m Kristin Disarro, the Chief Learning Officer at Khan Academy, and today I am looking forward to talking with Dr. Thomas Guskey about many things learning-related, but particularly grades, grading, and re…
Finding mistakes in one-step equations | 6th grade | Khan Academy
We’re told that Lisa tried to solve an equation: see, 42 is equal to 6a, or 6 times a. Then we can see her steps here, and they say where did Lisa make her first mistake. So pause this video and see if you can figure that out. It might be possible she mad…
Alex Blumberg of Gimlet Media
Maybe the best place to start is which, seemingly, was the most common question. Mm-hmm. Rowe asked it, and a couple other people on Twitter: How do you source stories? That’s a really good question, and it’s one that we are sort of working to answer more…
Saving Animals Through Photography | Nat Geo Live
( intro music ) We’re about 5,000 species into a 12,000 species quest. Let’s just get people to look these animals in the eye on black and white backgrounds, We’re not trying to get everything on the face of the Earth, there’s millions. We’re trying to ge…
Fashion Brands You Wear As You Get Richer
The richer you get, the more the way you look changes. And in this video, we’re looking at what brands you start to gravitate toward as your bank account keeps growing. Welcome to Alux! So H&M is the store you walk into when you’re just starting to f…
The Largest Black Hole in the Universe - Size Comparison
The largest things in the universe are black holes. In contrast to things like planets or stars, they have no physical size limit and can literally grow endlessly. Although, in reality, specific things need to happen to create different kinds of black hol…