yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB/BC 1ab | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

The rate at which rainwater flows into a drain pipe is modeled by the function R, where R of T is equal to 20 sin of T^2 over 35 cubic feet per hour. T is measured in hours, and 0 is less than or equal to T which is less than or equal to 8. So T is going to go between zero and eight. The pipe is partially blocked, allowing water to drain out the other end of the pipe at a rate modeled by D of T, which is equal to 0.04 T^3 plus 0.4 T^2 plus 0.96 T, cubic feet per hour for the same interval. Right over here, there are 30 cubic feet of water in the pipe at time T equals zero.

All right, part A: how many cubic feet of rainwater flow into the pipe during the eight-hour time interval, 0 is less than or equal to T is less than or equal to 8? All right, so we know the rate, the rate that the things flow into the rainwater pipe. In fact, we could let me draw a little rainwater pipe here just so we can visualize what's going on.

So if this is, if that is the pipe right over there, things are flowing in at a rate of R of T, and things are flowing out at a rate of D of T. They even tell us that there's 30 cubic feet of water right in the beginning. But these are the rates of entering and the rates of exiting. So how much water? They're asking how much, how many cubic feet of water flow into, so enter into the pipe during the 8-hour time interval.

So if you have your rate, this is the rate at which things are flowing into it. They give it in cubic feet per hour. If you multiply it times some change in time, even an infinitesimally small change in time, so DT, this is the amount that flows in over that very small change in time. And so what we want to do is we want to sum up these very small amounts over very small changes in time to go from time is equal to zero all the way to time is equal to 8.

So this expression right over here, this is going to give us how many cubic feet of water flow into the pipe. Once again, what am I doing? R of T * DT. This is how much flows, what volume flows in over very small interval DT. Then, we're going to sum it up from T equals 0 to T equals 8. That's the power of the definite integral.

And so, this is going to be equal to the integral from 0 to 8 of 20 sin of T^2 over 35 DT. And lucky for us, we can use calculators in this section of the AP exam. So let's bring out a graphing calculator where we can evaluate definite integrals. And so let's see, we want to do definite integrals, so I can click math right over here, move down.

So this function FN integral, this is an integral of our function or function integral right over here. So let me press enter. And the way that you do it is you first define the function, then you press a comma, then you say what variable is the variable that you're integrating with respect to, and then you put the bounds of integration.

So I'm going to write 20 sin of, and just because it's easier for me to input X than T, I'm going to use x, but if you just use this as sin of x^2 over 35 DX, you're going to get the same value. So you're going to get x^2 divided by 35, divided by 35; close that parenthesis. So that is my function. There, actually I don't know if it's going to understand. Let me, I don't know if it's going to understand, so let me put the times, so second insert times just to make sure it understands that.

Okay, so that's my function and then let me throw a comma here, make it clear that I'm integrating with respect to X. I could have put a T here and integrated with respect to T; we'd get the same value, comma, my lower bound is zero, and my upper bound is eight. Close the parenthesis and then let the calculator munch on it a little bit, and we get 76.570. So this is approximately 76.570.

Now let's tackle the next part: Is the amount of water in the pipe increasing or decreasing at time T equals 3 hours? Give a reason for your answer. Well, what would make it increasing? Well, if the rate at which things are going in is larger than the rate at which things are going out, then the amount of water would be increasing. But if it's the other way around, if we're draining faster at T equals 3 than things are flowing into the pipe, then the amount of water would be decreasing.

Let me be clear. So, amount: if R of T is greater than D of T, actually let me write it this way: if R of 3, when T equals 3 (because T is given in hours), if R of 3 is greater than D of 3. Whoops! Then D of 3. If R of 3 is greater than D of 3, that means water is flowing in at a higher rate than leaving. So that means that water in the pipe, right, then the water in the pipe is increasing.

And then, if it's the other way around, if D of 3 is greater than R of 3, then water in the pipe is decreasing. Then you're draining faster than you're putting into it, then water in the pipe is decreasing. So we just have to evaluate these functions at three. So let's see, R of 3 is equal to, well let me get my calculator out.

This is going to be, oops not that calculator; let me get this calculator out. So, and I'm assuming that things are in radians here. So I already put my calculator in radian mode. So it's going to be 20 * sin of (3^2) over 35, and it gives us this is equal to approximately 5.09. So this is approximately 5.09. And D of 3, D of 3 is going to be approximately, so look at the calculator back out.

So it is, we have 0.04 times 3^3, so times 27 plus 0.4 * 3^2 plus 0.96 * 3. And this gives us 5.4. So this is equal to, so this is equal to 5.4. So D of 3 is greater than R of 3, so water is increasing. Sorry, water is decreasing. We're draining faster than we're getting water into it, so water is decreasing.

More Articles

View All
How Much of the Earth Can You See at Once?
Foreign Michael here, and here I am, the real Michael. This Michael was created by a brilliant young man named Mitchell, who brought it to me at a meet and greet after Brain Candy Live. It is phenomenal, and obviously the most handsome Jack-in-the-Box eve…
why is it so hard to live in the moment?
How much of life do you remember? [Music] Sam, you felt like you’re present in the current moment. You’re physically here, but our minds are always busy, always somewhere else. I heard this call and can’t stop thinking about it: you’re depressed because…
The Illusion Only Some People Can See
I am going to turn myself into an optical illusion by going through this window right here. Ah, (grumbles) huh. Okay, I’m good, oh, not good. I was gonna say I’m good, I’m not good. Okay, so you’re looking at this window and it looks like it’s turning ar…
Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy
So let’s see if we can find the limit as x approaches negative one of six x squared plus five x minus one. Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you …
I was TERRIFIED to film this - how to take action!
What’s up you guys? It’s Graham here. So, I’m making this video as a part two to the video I uploaded about two weeks ago about how to get over your fear. On that video, I received this amazing comment from the user named Tristan. Tristan explained that …
Spending 24 Hours With MrBeast
So I was able to spend 24 hours with Mr. Beast, and even though I didn’t win a Lamborghini, or win five hundred thousand dollars, or get buried alive, this 24 hours taught me more about what it takes to run a successful business than the years I spent lea…