yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finishing the intro lagrange multiplier example


5m read
·Nov 11, 2024

So, in the last two videos, we were talking about this constrained optimization problem where we want to maximize a certain function on a certain set: the set of all points ( x, y ) where ( x^2 + y^2 = 1 ).

We ended up working out, through some nice geometrical reasoning, that we need to solve this system of equations. So, there's nothing left to do but to just solve the system of equations.

We'll start with this first one at the top and see what we can simplify. We notice there's an ( x ) term in each one, so we'll go ahead and cancel those out, which is basically a way of saying we're assuming that ( x ) is not zero. We can kind of return to that to see if ( x = 0 ) could be a solution. So maybe we'll kind of write that down: we're assuming ( x \neq 0 ) in order to cancel out.

From this, we can simplify to get ( 2y = \lambda \cdot 2 ). The ( 2 )s can cancel out—no worries about ( 2 ) equaling ( 0 ). We know that ( y = \lambda ), so that's a nice simplified form for this equation.

For the next equation, we can use what we just found—that ( y = \lambda )—to replace the ( \lambda ) that we see. Instead, if I replace this with ( y ), what I'm going to get is that ( x^2 = y \cdot 2 \cdot y ), so that's ( 2y^2 ). I’ll leave it in that form because I see that in the next equation I see an ( x^2 ) and I see ( y^2 ). So it might be nice to be able to plug this guy right into it.

In that next equation, ( x^2 ), I'm going to go ahead and replace that with ( y^2 ), so that's ( 2y^2 + y^2 = 1 ). Then, from there, it simplifies to ( 3y^2 = 1 ), which in turn means ( y^2 = \frac{1}{3} ). So, ( y = \pm \sqrt{\frac{1}{3}} ). Great! This gives us ( y ), and I’ll go ahead and put a box around that—we have found what ( y ) must be.

Now, if ( y^2 = \frac{1}{3} ), then when we look up here and we say ( 2y^2 ), that's going to be the same thing as ( 2 \cdot \frac{1}{3} ). So, if ( x^2 = \frac{2}{3} ), what that implies is that ( x = \pm \sqrt{\frac{2}{3}} ). And there we go, that's another one of the solutions.

I could write down what ( \lambda ) is, right? I mean, in this case, it's easy because ( y = \lambda ). But all we really want in their final form are ( x ) and ( y ) since that's going to give us the answer to the original constraint problem.

So, this gives us what we want. We just have that pesky little possibility that ( x = 0 ) to address. For that, we can take a look and say if ( x = 0 ), let’s go through the possibility that maybe that’s one of the constrained solutions.

Well, in this equation, that would make sense since ( 2 \cdot 0 ) would equal ( 0 ). In this equation, that would mean that we’re setting ( 0 = \lambda \cdot 2y ). Well, since ( \lambda = y ), that would mean that for this side to equal zero, ( y ) would have to equal ( 0 ).

So, evidently, you know, if it was the case that ( x = 0 ), that would have to imply from the second equation that ( y = 0 ). However, if ( x ) and ( y ) both equal ( 0 ), this constraint can't be satisfied. So none of this is possible. We never even had to worry about this to start with, but it's something you do need to check just every time you're dividing by a variable; you're basically assuming that it's not equal to zero.

This right here gives us four possible solutions, four possible values for ( x ) and ( y ) that satisfy this constraint and which potentially maximize this. And remember, when I say potentially maximize, the whole idea of this Lagrange multiplier is that we're looking for where there's a point of tangency between the contour lines.

Just to make it explicit, the four points that we're dealing with here: I’ll write them all here.

So ( x ) could be ( \sqrt{\frac{2}{3}} ), and ( y ) could be the positive ( \sqrt{\frac{1}{3}} ). Then we can basically just toggle. You know, maybe ( x ) is the negative ( \sqrt{\frac{2}{3}} ) and ( y ) is still the positive ( \sqrt{\frac{1}{3}} ). Or maybe ( x ) is the positive ( \sqrt{\frac{2}{3}} ) and ( y ) is the negative ( \sqrt{\frac{1}{3}} ).

Kind of monotonous, but just getting all of the different possibilities on the table here: ( x = -\sqrt{\frac{2}{3}} ) and then ( y = \sqrt{\frac{1}{3}} ) or ( y = -\sqrt{\frac{1}{3}} ). So these are the four points where the contour lines are tangent.

To find which one of these maximizes our function here, let's go ahead and write down our function again. It gets easy to forget. The whole thing we’re doing is maximizing ( f(x, y) = x^2 \cdot y ). So let me just put that down again: we're looking at ( f(x, y) = x^2 \cdot y ).

We could just plug these values in and see which one of them is actually greatest. The first thing to observe is ( x^2 ) is always going to be positive. So if I plug in a negative value for ( y )—if I plug in either this guy here or this guy here where the value for ( y ) is negative—the entire function would be negative.

So I’m just going to say that neither of these can be the maximum because it'll be some positive number, some ( x^2 ) times a negative, whereas I know that these guys are going to produce a positive number. Specifically, if we plug in ( f ) of, let’s say, this top one: ( \sqrt{\frac{2}{3}} ), ( \sqrt{\frac{1}{3}} ). Well, ( x^2 ) is going to be ( \frac{2}{3} ), and then ( y ) is ( \sqrt{\frac{1}{3}} ).

In fact, that's going to be the same as what we get plugging in this other value. So either one of these maximizes the function. It's got two different maximizing points, and each one of them has a maximum value of ( \frac{2}{3} \cdot \sqrt{\frac{1}{3}} ), and that's the final answer.

But I do want to emphasize that the takeaway here is not the specific algebra that you work out going towards the end, but it's the whole idea of this Lagrange multiplier technique. To find the gradient of one function, find the gradient of the constraining function, and then set them proportional to each other. That’s the key takeaway.

Then the rest of it is just, you know, making sure that we check our work and go through the minute details, which is important—it has its place. Coming up, I’ll go through a few more examples.

More Articles

View All
The Lost Colony of Roanoke - settlement and disappearance
So that takes us to our third and what will be final expedition to the new world. And this is where the spooky part comes in. This is where the spooky part comes in. Sir Walter Raleigh and John White realized that a whole group of soldiers was probably no…
Why You Must Be Ruthless in Business or Fail | Kevin O'Leary
[Music] Yeah, well, you’re preaching to the choir here, and I completely agree. That’s why I jumped ship from my, you know, job at the studio table your door, because you were personally motivated to stop living that way. Yeah, but can you talk about the…
A Man Among Wolves: Photographing Yellowstone’s Iconic Predators | National Geographic
This is so cool! I was in Yellowstone for a year and a half. My job was to shed light on wolf behavior in a natural landscape. A lot of times, wolves get persecuted, and this was an opportunity for me to just show wolves for what they were; for being larg…
Protecting Ancient Artifacts | Explorer
Nadia’s help, the museum agreed to let me inspect the seized antiquities. “Where are you keeping the antiquities?” I asked. “Down here,” was the response from a curator of the museum. This kind of “jewy” Ramon punk guy looked a bit out of place, but th…
Tactics That Keep You Moving In The Right Direction
Some of the most impactful tools that you can use to succeed in life are 100% free, and everyone has access to them, but almost no one uses them. We promise you that if you implement everything on this list, you will be a completely different person in le…
Get a Tour of the Student Experience on Khan Academy
Hi everyone, this is Jeremy Shifling of Khan Academy. I’m joined by our amazing leader of professional learning, Megan Patani. Megan has a real treat in store for you today because she’s going to walk you through not the educator experience that you’re us…