yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using associate property to simplify multiplication


3m read
·Nov 11, 2024

In this video, we're going to think about how we can use our knowledge of multiplying single-digit numbers to multiply things that might involve two digits.

So, for example, let's start with what is 5 times 18. You can pause the video and see how you might try to approach this, and then we'll do it together.

All right, so if we're trying to tackle 5 times 18, one strategy could be to say, "Hey, can I re-express 18 as the product of two numbers?" The one that jumps out at me is that eighteen is the same thing as two times nine.

So I could rewrite five times eighteen; this is the same thing as 5 times instead of 18, I could write 2 times 9. Now, why does this help us? Well, instead of multiplying the 2 times 9 first to get the 18 and then multiplying that by 5, what we could do is we could multiply the 5 times the 2 first.

And you might be thinking, "Wait, wait, hold on a second! Before you did the 2 times 9 first, and now you're telling me that you're going to change the order? You're going to say, 'Hey, let's multiply the 5 times 2 first'? Is that ok?"

And the simple answer is yes, it is ok. If you are multiplying a string of numbers, you can do them in any order that you choose. So this is often known as the associative property of multiplication.

We can associate the two with the nine first; we can multiply those first, or we can have an association with the five and the two. We can multiply those two first.

Now, why is that helpful? Well, what is five times two? Well, that's pretty straightforward; that's going to be equal to ten. So this is going to be equal to ten, we're doing that same color: 10 times 9.

Now, 10 times 9 is a lot more straightforward for most of us than 5 times 18. 10 times 9 is equal to 90.

Let's do another example: Let's say we want to figure out what 3 times 21 is. Pause this video and see if you can work through that. There's multiple ways to do it, but see if you could do it the way we just approached this first example.

Well, as you could imagine, we want to re-express 21 as the product of smaller numbers. So we could rewrite 21 as 3 times 7 maybe. And so if we rewrite it as 3 times 7, and now we do the 3 times 3 first, so I'm going to put parentheses there, which we can do because of the associative property of multiplication—a fancy word for something that is hopefully a little bit intuitive.

Well then, this is going to be equal to what's 3 times 3? It is 9, and then times 7, which you may already know is equal to 63.

Let's do another example; this is kind of fun. Let's say we want to figure out what 14 times 5 is. Pause this video and see if you can figure that out.

Well, we could once again try to break up 14 into the product of smaller numbers. 14 is 2 times 7, so we can rewrite this as 2 times 7 or 7 times 2. I'm writing it as 7 times 2 because I want to associate the 2 with the 5 to get the 10 times 5, and then I could multiply the 2 times 5 first.

So this is going to give us 7 times 10, which is of course equal to 70.

One more example: let's say we want to calculate 15 times 3. How would you tackle that?

Well, we can break up 15 into 5 times 3. 5 times 3, and then we can multiply that, of course, by this 3, and then we can multiply the 3s together first, and then this amounts to 5 times 9.

5 times 9, you might already be familiar with this; this is going to be equal to 45.

And another way to get to 45, you could say, "Hey, 5 times 10 is 50, so 5 times 9 is going to be 5 less than that, which is also 45."

More Articles

View All
Pictures of the Year 2022 | Podcast | Overheard at National Geographic
Foreign [Music] I had just arrived and so I and I’m breathing hard. 17,500 feet is no joke. I mean, I had gotten sick; all of us had kind of gotten sick on the way up. I’d gotten particularly sick. I can barely get my breath. That’s Sadie Courier; she’s …
Where Are the Aliens?
Let’s talk briefly about the Fermi Paradox, since we’re talking about aliens. For those listeners who don’t know, Enrico Fermi was a famous physicist part of the Manhattan Project, and he said, “Where are the aliens?” The universe is so large; there’s pr…
Why Ocean Exploration is so Important
The ocean is obviously our biggest and most important natural resource. Consider that it’s twice the size of all continents combined, and it’s almost totally unexplored. It’s thrilling to be able to explore it. So, I’m on a mission to make you excited, m…
15 Things You Didn't Know About TUDOR
This is Fashion Fridays! Every Friday, we present you with a fashion icon or topic. Today, we’re looking at 15 things you didn’t know about Tudor. Welcome to a Luxe.com, the place where future billionaires come to get inspired! Hello, Aluxers! We are her…
Parallel resistors (part 3) | Circuit analysis | Electrical engineering | Khan Academy
In this video, we’re going to talk even some more about parallel resistors. Parallel resistors are resistors that are connected end to end and share the same nodes. Here’s R1 and R2; they share the same nodes, that one and that one, and that means they sh…
RECESSION ALERT: The 5 BEST Index Funds To Buy ASAP
What’s up, Graham? It’s guys here. So, I’ve noticed that people love to over complicate investing. Just buy into money puts expiring on May 12th over here, March in your portfolio. When the Fibonacci sequence falls below the 369-day moving average, you’ll…