yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Kinematics and force example


3m read
·Nov 11, 2024

A 1900 kilogram truck has an initial speed of 12 meters per second. The driver applies the brakes, and the truck stops in 3.1 seconds. What is the best estimate of the magnitude of the average braking force on the truck? Pause this video, see if you can work this out.

All right, probably the simplest way to approach this is to say, well, we could figure out the magnitude of the acceleration, the average acceleration on that truck as it comes to a stop. Then we could use Newton's second law, F = ma, because we know its mass. If we know the mass and the magnitude of the acceleration, we could use Newton's second law to come up with the magnitude of the average braking force. They just want us to estimate it, and we can see that these choices are pretty far apart. So, an estimate will serve us well.

So first, let's think about the acceleration. The acceleration is going to be our change in velocity over change in time. That is just going to be our final velocity minus our initial velocity in the numerator. So our final velocity is 0 meters per second; we come to a stop, minus our initial velocity, that's 12 meters per second. The convention that we'll assume, and it's typical, is that if we're moving to the right, it's positive; if we're moving to the left, it's negative. It's moving to the right at 12 meters per second, so we're subtracting that positive velocity out.

This is our change in velocity over our change in time. Well, 3.1 seconds elapses. So over 3.1 seconds, what is this going to be approximately equal to? Well, let's see. Negative 12 over 3.1 is going to be approximately 4. Once again, I am estimating; it might be a little bit closer to, oh, and it's going to be approximately equal to negative 4. It might be a little bit closer to negative 3.9, around there, but I'll go with negative 4. The units are meters per second squared.

Now we use Newton's second law to think about the magnitude of the braking force. This makes sense that the acceleration is negative, that our velocity is in this direction, but our acceleration is in the other direction. It is slowing down; we're getting lower and lower velocities. Our force is going to be in the same direction; our net force is in the same direction as that acceleration. It's going to be to the left, so if we had a sign on it, it would be negative, but we just care about the magnitude.

When we think about Newton's second law, we'll also just look at the magnitude of the acceleration. So, Newton's second law tells us the magnitude of the force needs to be equal to the mass times the magnitude of the acceleration. This is going to be equal to—let me write an approximation here because I approximated this. It's going to be approximately 1900 kilograms times 4 meters per second squared.

I didn't feel the need to write the negative there because I just want to get the magnitude; I care about the absolute value right now. If I do this, this is going to be approximately, what, 7600 kilograms? Now, if I look at the choices, I don't see 7600, but the closest one over here is 7400. I feel good about that because the real value here might be closer to negative 3.9 meters per second squared. If this was 3.9 right over here, 3.9 times 1900, well, that gets us a lot closer to this right here. So, I like this choice, and all the other ones are way off from our estimate.

More Articles

View All
Rethinking Our Relationship With Water | National Geographic
It’s hard to believe the world could ever run out of fresh water. Even though we live on a blue planet, only about three percent of Earth’s water is fresh. Of that, only one percent can be used as drinking water, and that is threatened by climate change a…
The HIDDEN COST of buying Real Estate…
What’s up you guys, it’s Graham here. So here’s a topic that very few people cover when it comes to buying or investing in real estate, myself included. I’ve been making videos for a year and a half now, and I have yet to cover this topic even though it’s…
How Does A Carburetor Work? | Transparent Carburetor at 28,546 fps Slow Mo - Smarter Every Day 259
This is a carburetor, and this is a special 3D printed see-through carburetor. And this is a high-speed camera with a macro lens on it. You see where this is going. If you’ve ever cranked some type of lawn care product with a small engine on it, you have …
The Ponzi Factor | More than half of Madoff's accounts were WINNERS!
Most people understand that a Ponzi scheme is a scam, but what most people don’t realize is that a Ponzi scheme can also produce a lot of winners. It’s not a scam where everyone loses money; a lot of investors who are involved and unaware of the scam can …
Answering google's most searched questions of 2019..
So the Internet is a big place. There’s a lot of people on it, a lot of curious people. Things they want to do, stuff they want to learn, and that’s great and all. You know, it’s always good to learn things; you should never stop learning. Search engines …
Khan Academy’s AI Tool for the Classroom: Teacher + Student Edition
Welcome, welcome! We are going to be starting promptly at 3 o’clock, but we’re going to start letting our participants come in, so thank you for joining us today. Hello, hello, hello! Thank you all for joining us. We still have some participants coming in…