yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Kinematics and force example


3m read
·Nov 11, 2024

A 1900 kilogram truck has an initial speed of 12 meters per second. The driver applies the brakes, and the truck stops in 3.1 seconds. What is the best estimate of the magnitude of the average braking force on the truck? Pause this video, see if you can work this out.

All right, probably the simplest way to approach this is to say, well, we could figure out the magnitude of the acceleration, the average acceleration on that truck as it comes to a stop. Then we could use Newton's second law, F = ma, because we know its mass. If we know the mass and the magnitude of the acceleration, we could use Newton's second law to come up with the magnitude of the average braking force. They just want us to estimate it, and we can see that these choices are pretty far apart. So, an estimate will serve us well.

So first, let's think about the acceleration. The acceleration is going to be our change in velocity over change in time. That is just going to be our final velocity minus our initial velocity in the numerator. So our final velocity is 0 meters per second; we come to a stop, minus our initial velocity, that's 12 meters per second. The convention that we'll assume, and it's typical, is that if we're moving to the right, it's positive; if we're moving to the left, it's negative. It's moving to the right at 12 meters per second, so we're subtracting that positive velocity out.

This is our change in velocity over our change in time. Well, 3.1 seconds elapses. So over 3.1 seconds, what is this going to be approximately equal to? Well, let's see. Negative 12 over 3.1 is going to be approximately 4. Once again, I am estimating; it might be a little bit closer to, oh, and it's going to be approximately equal to negative 4. It might be a little bit closer to negative 3.9, around there, but I'll go with negative 4. The units are meters per second squared.

Now we use Newton's second law to think about the magnitude of the braking force. This makes sense that the acceleration is negative, that our velocity is in this direction, but our acceleration is in the other direction. It is slowing down; we're getting lower and lower velocities. Our force is going to be in the same direction; our net force is in the same direction as that acceleration. It's going to be to the left, so if we had a sign on it, it would be negative, but we just care about the magnitude.

When we think about Newton's second law, we'll also just look at the magnitude of the acceleration. So, Newton's second law tells us the magnitude of the force needs to be equal to the mass times the magnitude of the acceleration. This is going to be equal to—let me write an approximation here because I approximated this. It's going to be approximately 1900 kilograms times 4 meters per second squared.

I didn't feel the need to write the negative there because I just want to get the magnitude; I care about the absolute value right now. If I do this, this is going to be approximately, what, 7600 kilograms? Now, if I look at the choices, I don't see 7600, but the closest one over here is 7400. I feel good about that because the real value here might be closer to negative 3.9 meters per second squared. If this was 3.9 right over here, 3.9 times 1900, well, that gets us a lot closer to this right here. So, I like this choice, and all the other ones are way off from our estimate.

More Articles

View All
Khan for Educators: Student experience
Hi, I’m Megan from Khan Academy, and in this video, we’re going to walk you through the learner or student experience at Khan Academy. We believe that everyone is a learner; from the teacher perspective, all of your students are learners, and you can be a…
Ali Partovi - Startup Investor School Day 3
Ali is the founder and CEO of neo, which he can explain what that is. It’s a very cool new organization, but he’s also an entrepreneur, a social entrepreneur whom I admire a ton for the things he’s done. We met, like I said, too many years ago when he and…
Lions 360° | National Geographic
It is not often a mother has to lead her cub away from the pride, but it happens. This is Gibson, who has already lost a brother. His mother, knowing what might happen if they return, is always on the lookout. There’s a thread out there. This is Paula. H…
Solving quadratics by taking square roots examples | High School Math | Khan Academy
So pause the video and see if you can solve for x here. Figure out which x values will satisfy this equation. All right, let’s work through this, and the way I’m going to do this is I’m going to isolate the (x + 3) squared on one side. The best way to do …
How Helicopters Fly | Science of Stupid: Ridiculous Fails
Renaissance artist and all-around smart cookie Leonardo da Vinci famously painted the Mona Lisa and the Last Supper. But he also may have been the first person to design one of these—nope, not the wakeboard, that thing in the sky also known as a helicopte…
Worked example: Rewriting expressions by completing the square | High School Math | Khan Academy
Let’s see if we can take this quadratic expression here, ( x^2 + 16x + 9 ), and write it in this form. You might be saying, “Hey Sal, why do I even need to worry about this?” One, it is just good algebraic practice to be able to manipulate things. But as…