yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Rewriting expressions by completing the square | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can take this quadratic expression here, ( x^2 + 16x + 9 ), and write it in this form.

You might be saying, "Hey Sal, why do I even need to worry about this?" One, it is just good algebraic practice to be able to manipulate things. But as we'll see in the future, what we're about to do is called completing the square. It's a really valuable technique for solving quadratics, and it's actually the basis for the proof of the quadratic formula, which you'll learn in the future. So it's actually a pretty interesting technique.

So how do we write this in this form? Well, one way to think about it is if we expanded this ( (x + a)^2 ). We know if we square ( (x + a) ) we would get ( x^2 + 2ax + a^2 ), and then you still have that plus ( b ) right over there.

So one way to think about it is let's take this expression, this ( x^2 + 16x + 9 ). I'm just going to write it with a little few spaces in it: ( x^2 + 16x ) and then ( + 9 ), just like that.

If we say, "Alright, we have an ( x^2 ) here, we have an ( x^2 ) here," if we say that ( 2ax ) is the same thing as that, then what's ( a ) going to be? So if this is ( 2a \times x ), well that means ( 2a = 16 ) or that ( a = 8 ).

And so if I want to have an ( a^2 ) over here, well if ( a ) is 8, I would add ( 8^2 ), which would be 64. Well, I can't just add numbers willy-nilly to an expression without changing the value of an expression. So if I don't want to change the value of the expression, I still need to subtract 64.

So notice all that I have done now is I just took our original expression, and I added 64 and subtracted 64. So I have not changed the value of that expression. But what was valuable about me doing that is now this first part of the expression, this part right over here, fits the pattern of what? A perfect square quadratic.

Right over here we have ( x^2 + 2ax ) where ( a ) is 8, plus ( a^2 ) which is 64. Once again, how did I get 64? I took half of the 16 and I squared it to get to the 64.

And so this stuff that I've just squared off, this is going to be ( (x + 8)^2 ). Once again, I know that because ( a ) is 8. So this is ( (x + 8)^2 ).

And then all of this business on the right-hand side, what is ( 9 - 64 )? Well, ( 64 - 9 ) is ( -55 ). So this is going to be ( -55 ).

So minus 55, and we're done! We've written this expression in this form, and what's also called completing the square.

More Articles

View All
Wild Life | Official Trailer | National Geographic
In the very beginning, Doug and I were living in the middle of this paradise, and we said it would be incredible to save this place, just save it. Doug and Chris, you would see them together, and it was like teenage kids; he was very charming. I thought, …
Once You Stop Caring, Results Come | The Law of Reverse Effect
Once, there was a writer who happened to specialize in crafting thought-provoking essays on various subjects. Through hard work and seemingly endless creativity, she managed to publish numerous pieces that captivated her readers. However, one day, she fou…
Definite integral properties (no graph): breaking interval | AP Calculus AB | Khan Academy
We’re given that the definite integral from one to four of f of x dx is equal to six, and the definite integral from one to seven of f of x dx is equal to eleven. We want to figure out the definite integral from four to seven of f of x dx. So, at least i…
Rhinoplasty Confusion (Clip) | To Catch a Smuggler | National Geographic
What were you doing in Mexico? Oh, okay. A couple of people have been doing that. Here’s an essential part of entry with the summer upon us. We have high traffic, a lot of crossers. So we’re seeing an increase of narcotics smuggling, people smuggling. CO…
Reading multiple accounts of the same topic | Reading | Khan Academy
Hello readers. There’s a famous Japanese movie from 1950 called Rashomon, which is about different perspectives on a horrible crime scene. This is a film for adults, definitely consult your parent or guardian. In the film, you witness four distinct accoun…
Confidence interval for the slope of a regression line | AP Statistics | Khan Academy
Musa is interested in the relationship between hours spent studying and caffeine consumption among students at his school. He randomly selects 20 students at his school and records their caffeine intake in milligrams and the amount of time studying in a g…