yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Rewriting expressions by completing the square | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can take this quadratic expression here, ( x^2 + 16x + 9 ), and write it in this form.

You might be saying, "Hey Sal, why do I even need to worry about this?" One, it is just good algebraic practice to be able to manipulate things. But as we'll see in the future, what we're about to do is called completing the square. It's a really valuable technique for solving quadratics, and it's actually the basis for the proof of the quadratic formula, which you'll learn in the future. So it's actually a pretty interesting technique.

So how do we write this in this form? Well, one way to think about it is if we expanded this ( (x + a)^2 ). We know if we square ( (x + a) ) we would get ( x^2 + 2ax + a^2 ), and then you still have that plus ( b ) right over there.

So one way to think about it is let's take this expression, this ( x^2 + 16x + 9 ). I'm just going to write it with a little few spaces in it: ( x^2 + 16x ) and then ( + 9 ), just like that.

If we say, "Alright, we have an ( x^2 ) here, we have an ( x^2 ) here," if we say that ( 2ax ) is the same thing as that, then what's ( a ) going to be? So if this is ( 2a \times x ), well that means ( 2a = 16 ) or that ( a = 8 ).

And so if I want to have an ( a^2 ) over here, well if ( a ) is 8, I would add ( 8^2 ), which would be 64. Well, I can't just add numbers willy-nilly to an expression without changing the value of an expression. So if I don't want to change the value of the expression, I still need to subtract 64.

So notice all that I have done now is I just took our original expression, and I added 64 and subtracted 64. So I have not changed the value of that expression. But what was valuable about me doing that is now this first part of the expression, this part right over here, fits the pattern of what? A perfect square quadratic.

Right over here we have ( x^2 + 2ax ) where ( a ) is 8, plus ( a^2 ) which is 64. Once again, how did I get 64? I took half of the 16 and I squared it to get to the 64.

And so this stuff that I've just squared off, this is going to be ( (x + 8)^2 ). Once again, I know that because ( a ) is 8. So this is ( (x + 8)^2 ).

And then all of this business on the right-hand side, what is ( 9 - 64 )? Well, ( 64 - 9 ) is ( -55 ). So this is going to be ( -55 ).

So minus 55, and we're done! We've written this expression in this form, and what's also called completing the square.

More Articles

View All
Everything We Don’t Know About Time
Time is something that everyone is familiar with. 60 seconds is 1 minute, 60 minutes is 1 hour, 24 hours is 1 day, and so on. This is known as linear time and is something that everyone is familiar with and agrees upon. But consider this: if someone came…
Restoring the River's Flow | DamNation
Dropped my gear off, schlepped it all out over the fence, drove back down, parked the van, got on my bicycle, rode up there, stashed it. Gl’s canyons near vertical; it’s very steep, it’s dark, it’s a damp slippery dam with a 200t abyss right below. So we’…
Every Mathematical Theory Is Held Inside a Physical Substrate
There goes my solution for Zeno’s paradox, which is: before you can get all the way somewhere, you have to get halfway there. And before you can get halfway there, you have to get a quarter of the way there. And therefore, you’ll never get there. One way…
MARS | Exclusive Sneak Peek
And now an exclusive sneak peek at the first episode of [Music] [Music] Mars Retro Rockets about to fire in 1, 2, 3… bre… 1, 2… [Music] three. We dream it’s who we are, down to our bones, ourselves. That instinct to build, that drive to seek beyond what …
Radiation vs Radioactive Atoms
Radiation has been in the news a lot lately, but the term “radiation” has just been thrown around loosely to mean anything potentially damaging coming away from a nuclear power plant. So, what are people worried about? That it’s going to, like, explode an…
Hard Pill to Swallow | Badlands, Texas
Something was taken from Tringa that can’t be given back. I don’t think in my lifetime Tring was ever hit this hard. This was an atrocity; that’s a hell of a thing for a community to try and swallow. But they ain’t going to forget. Tony Flint just walked…