yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Rewriting expressions by completing the square | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can take this quadratic expression here, ( x^2 + 16x + 9 ), and write it in this form.

You might be saying, "Hey Sal, why do I even need to worry about this?" One, it is just good algebraic practice to be able to manipulate things. But as we'll see in the future, what we're about to do is called completing the square. It's a really valuable technique for solving quadratics, and it's actually the basis for the proof of the quadratic formula, which you'll learn in the future. So it's actually a pretty interesting technique.

So how do we write this in this form? Well, one way to think about it is if we expanded this ( (x + a)^2 ). We know if we square ( (x + a) ) we would get ( x^2 + 2ax + a^2 ), and then you still have that plus ( b ) right over there.

So one way to think about it is let's take this expression, this ( x^2 + 16x + 9 ). I'm just going to write it with a little few spaces in it: ( x^2 + 16x ) and then ( + 9 ), just like that.

If we say, "Alright, we have an ( x^2 ) here, we have an ( x^2 ) here," if we say that ( 2ax ) is the same thing as that, then what's ( a ) going to be? So if this is ( 2a \times x ), well that means ( 2a = 16 ) or that ( a = 8 ).

And so if I want to have an ( a^2 ) over here, well if ( a ) is 8, I would add ( 8^2 ), which would be 64. Well, I can't just add numbers willy-nilly to an expression without changing the value of an expression. So if I don't want to change the value of the expression, I still need to subtract 64.

So notice all that I have done now is I just took our original expression, and I added 64 and subtracted 64. So I have not changed the value of that expression. But what was valuable about me doing that is now this first part of the expression, this part right over here, fits the pattern of what? A perfect square quadratic.

Right over here we have ( x^2 + 2ax ) where ( a ) is 8, plus ( a^2 ) which is 64. Once again, how did I get 64? I took half of the 16 and I squared it to get to the 64.

And so this stuff that I've just squared off, this is going to be ( (x + 8)^2 ). Once again, I know that because ( a ) is 8. So this is ( (x + 8)^2 ).

And then all of this business on the right-hand side, what is ( 9 - 64 )? Well, ( 64 - 9 ) is ( -55 ). So this is going to be ( -55 ).

So minus 55, and we're done! We've written this expression in this form, and what's also called completing the square.

More Articles

View All
Turning The Tide | Plastic on the Ganges
[Music] You take this incredible material that lasts for hundreds of years. We use it for a few seconds, a few minutes, and then we throw it away. [Music] [Music] I’m Heather Coldway. I’m a National Geographic fellow, and I’m the science co-lead for the …
Paul Giamatti on the Set of Breakthrough | Breakthrough
Hello, I’m Paul Giamatti, and welcome to the set of Breakthrough. I’m not a big tech guy; I mean, I find this stuff interesting, but I’m inapt with it. This stuff is really cool. I’m into the kind of cybernetics and then robotic stuff; it’s been ridiculou…
The Odd Number Rule
Hey, Vsauce, Michael here. Why though? Why are any of us here? What’s the purpose? What does it all mean? Well, sometimes if we listen closely enough when we ask why, we can hear an answer, and it’s another question: Why? Why? What? Our journey begins he…
Sal Khan chats with Google CEO Sundar Pichai
It’s huge treat to have Sundar Pichai, CEO of Google, here. And you know I will give a little bit of a preamble more than I normally do. I think a lot of the team knows this, but it’s always worth reminding the team we wouldn’t be here on many levels if i…
Marcus Aurelius - Stop Caring What People Think
In Meditations, Marcus Aurelius said, “Don’t waste the rest of your time here worrying about other people—unless it affects the common good. It will keep you from doing anything useful. You’ll be too preoccupied with what so-and-so is doing, and why, and …
The Stilwell Brain
“I think, therefore, I am.” But am I? I think. Ha. A single microscopic brain cell cannot think, is not conscious, but if you bring in a few more brain cells, and a few more, and connect them all, at a certain point, the group itself will be able to think…