yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Rewriting expressions by completing the square | High School Math | Khan Academy


2m read
·Nov 11, 2024

Let's see if we can take this quadratic expression here, ( x^2 + 16x + 9 ), and write it in this form.

You might be saying, "Hey Sal, why do I even need to worry about this?" One, it is just good algebraic practice to be able to manipulate things. But as we'll see in the future, what we're about to do is called completing the square. It's a really valuable technique for solving quadratics, and it's actually the basis for the proof of the quadratic formula, which you'll learn in the future. So it's actually a pretty interesting technique.

So how do we write this in this form? Well, one way to think about it is if we expanded this ( (x + a)^2 ). We know if we square ( (x + a) ) we would get ( x^2 + 2ax + a^2 ), and then you still have that plus ( b ) right over there.

So one way to think about it is let's take this expression, this ( x^2 + 16x + 9 ). I'm just going to write it with a little few spaces in it: ( x^2 + 16x ) and then ( + 9 ), just like that.

If we say, "Alright, we have an ( x^2 ) here, we have an ( x^2 ) here," if we say that ( 2ax ) is the same thing as that, then what's ( a ) going to be? So if this is ( 2a \times x ), well that means ( 2a = 16 ) or that ( a = 8 ).

And so if I want to have an ( a^2 ) over here, well if ( a ) is 8, I would add ( 8^2 ), which would be 64. Well, I can't just add numbers willy-nilly to an expression without changing the value of an expression. So if I don't want to change the value of the expression, I still need to subtract 64.

So notice all that I have done now is I just took our original expression, and I added 64 and subtracted 64. So I have not changed the value of that expression. But what was valuable about me doing that is now this first part of the expression, this part right over here, fits the pattern of what? A perfect square quadratic.

Right over here we have ( x^2 + 2ax ) where ( a ) is 8, plus ( a^2 ) which is 64. Once again, how did I get 64? I took half of the 16 and I squared it to get to the 64.

And so this stuff that I've just squared off, this is going to be ( (x + 8)^2 ). Once again, I know that because ( a ) is 8. So this is ( (x + 8)^2 ).

And then all of this business on the right-hand side, what is ( 9 - 64 )? Well, ( 64 - 9 ) is ( -55 ). So this is going to be ( -55 ).

So minus 55, and we're done! We've written this expression in this form, and what's also called completing the square.

More Articles

View All
Physical and chemical changes | Chemical reactions | High school chemistry | Khan Academy
So what we have are three different pictures of substances undergoing some type of change, and what we’re going to focus on in this video is classifying things as either being physical changes or chemical changes. You might have already thought about this…
Momentum collision graphs
A cart of mass m moving rightward at speed 2v hits a slower moving cart of mass m moving rightward at speed v. When the carts collide, they hook together. There’s friction between the track and carts and between the moving parts of the carts. Which of the…
15 Ways Rich People AVOID Paying Taxes
Hello Aluxers and welcome back to what might be one of the most important Sunday Motivational Videos you’ve ever watched, because by the end of this piece, you’ll understand how to keep more of your money than ever before. If you search for this kind of …
Subtracting with place value blocks (regrouping)
What we want to do in this video is figure out what 438 minus 272 is. To help us think about that, we have these place value blocks right over here. You can see 438: we have four hundreds (100, 200, 300, 400), we have three tens (one, two, three), and th…
Chinese Imperial Dynasties | World History | Khan Academy
In other videos, we talk about some of the truly ancient Chinese dynasties: the Shang Dynasty, the Joe Dynasty. As we get to the end of the Joe Dynasty, China falls into chaos in the Warring States period, which is a really tough time for China. But the s…
Essential Startup Advice with Adora Chung, Reham Fagiri, Tiffani Ashley Bell, and Alana Branston
All right, hello everyone! My name is Oh Dora. I’m one of the partners at Y Combinator. I have Rehan from App Deco, Alana from Bulletin, and Tiffany from The Human Utility. Today, our discussion will be around essential startup advice. I think there’s a …