yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits at infinity of quotients with square roots (even power) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can find the limit as x approaches negative infinity of the square root of four x to the fourth minus x over two x squared plus three. And like always, pause this video and see if you can figure it out.

Well, whenever we're trying to find limits at either positive or negative infinity of rational expressions like this, it's useful to look at, well, what is the highest degree term in the numerator or in the denominator, or actually in the numerator and the denominator, and then divide the numerator and the denominator by that highest degree by x to that degree.

Because if we do that, then we're going to end up with some constants and some other things that will go to zero as we approach positive or negative infinity, and we should be able to find this limit.

So, what I'm talking about, let's divide the numerator by 1 over x squared, and let's divide the denominator by 1 over x squared. Now you might be saying, wait, wait! I see an x to the fourth here; that's a higher degree. But remember, it's under the radical here. So, if you want to look at it at a very high level, you're saying, okay, well, x to the fourth, but it's under, you're going to take the square root of this entire expression.

So, you can really view this as a second degree term. So, the highest degree is really second degree. So, let's divide the numerator and the denominator by x squared. And if we do that dividing, so this is going to be the same thing as the limit as x approaches negative infinity of...

So, let me just do a little bit of a side here. If I have 1 over x squared, let me write it, let me... 1 over x squared times the square root of 4 x to the fourth minus x, like we have in the numerator here, this is equal to... this is the same thing as 1 over the square root of x to the fourth times the square root of 4 x to the fourth minus x.

And so this is equal to the square root of 4 x to the fourth minus x over x to the fourth, which is equal to, and all I did is I brought the radical in here. This is, you could view this as the square root of all this divided by the square root of this, which is equal to just using our exponent rules, the square root of 4x to the fourth minus x over x to the fourth.

And then this is the same thing as 4 minus x over x to the fourth, which is 1 over x to the third. So, this numerator is going to be the square root of 4 minus 1 x to the third power.

And then the denominator is going to be equal to, well, you divide 2x squared by x squared, you're just going to be left with 2, and then 3 divided by x squared is going to be 3 over x squared.

Now let's think about the limit as we approach negative infinity. As we approach negative infinity, this is going to approach 0. 1 divided by things that are becoming more and more and more and more and more negative, their magnitude is getting larger, so this is going to approach 0.

This over here is also going to be, this thing is also going to be approaching 0; we're dividing by larger and larger and larger values. And so what this is going to result in is the square root of 4, the principal root of 4, over 2, which is the same thing as 2 over 2, which is equal to 1, and we are done.

More Articles

View All
Copán Ruinas Was a Thriving City - Until One Day, It Went Away | National Geographic
[Music] Copan Ruinas is one of the most mysterious and spectacular cities of the Maya civilization. At its height, between 250 to 900 AD, approximately 27,000 mile IFFT. Here, thereafter, the civilization mysteriously crumbled, and the Copan Ruinas were l…
He PRETENDED to buy a $40,000,000 house...and I believed him!
What’s up you guys, it’s Graham here. So, this video is gonna be a little bit different. I’m just gonna share a funny story from when I first started. It’s pretty ridiculous; it makes me look like an idiot, but whatever. I hope it’s funny. I hope you guys…
How to Reduce the Pain of Life | Arthur Schopenhauer
The nineteenth-century German philosopher Arthur Schopenhauer observed that nature is driven by an all-encompassing force, which he called Will, or more specifically, the Will-To-Live. This force is unconscious, aimless, and blind, and gives rise to an in…
Buddha - Drop Your Pride, Overcome Anger
In The Dhammapada, Buddha says that a wise man is beyond anger. Anger poisons the mind, leading to a life of isolation and sorrow. So can I purge the mind of anger once and for all? That’s what I’m interested in exploring, and I’m gonna explore that idea …
The Stock Market is One Giant Bubble. (Howard Marks Explains)
People are now convinced AI will change the world; I imagine it will. Every bubble uses widespread conviction. Everybody believes they bid the beneficiaries of a up to the Moon. It turns out it’s overdone. There’s Howard Marks, the founder of Oak Tree Cap…
Tony Robbins Endorsing The Jet Business!
Because he’s so passionate, he gets in the head of whoever he’s dealing with, and he really fights for you. You know, it’s like, you know, there’s so many people in this industry, and they’re in a hangar someplace, they’re working on the phone. Steve know…