yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conditions for IVT and EVT: table | Existence theorems | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

We're told this table gives a few values of function f. It tells us what f of x is equal to that x is equal to 2, 3, 4, and 5. Which condition would allow you to conclude that there exists a maximum value for f over the closed interval from 2 to 4?

So pause this video and see if you can figure it out. You might already remember if we're trying to conclude that there exists something. Anytime people are talking about there exists something over an interval, we're probably dealing with some type of an existence theorem.

And if we're talking about the existence of a maximum or a minimum value for a function over an interval, that means that we're talking about the extreme value theorem. We are likely talking about the extreme value theorem, and in order to apply the extreme value theorem (sometimes abbreviated EVT), we need to know that our function is continuous over this closed interval.

So in order to do that, we need to know that f is continuous over our closed interval here, over 2 to 4, the closed interval from 2 to 4. So let's see which of these will allow us to conclude this. Because if we're able to conclude this, then we're able to apply the extreme value theorem, which tells us that there exists a maximum value for f over that interval.

All right, choice A says f is increasing in the open interval from 2 to 3 and decreasing on the open interval from 3 to 5. Now you could complete this; this doesn't tell us that we're definitely continuous over that interval, over 2 to 4. So I would rule that out. You could definitely still be discontinuous, and statement A still being true, so I'm going to rule that one out.

F is continuous over the closed interval from 2 to 5. Well, if we're continuous over the closed interval from 2 to 5, we're definitely continuous over a subset, over that, over the closed interval from 2 to 4. And so if we're able to make that, if we know that, then we can use the extreme value theorem. We've met the condition for the extreme value theorem to say that there exists a maximum value for f over that interval.

So I like this one. Let's just look at this last one. F is differentiable over the open interval from 2 to 4 and at x is equal to 2. So this is close because differentiability does imply continuity, but it isn't telling us what's happening at x equals 4. We could still be discontinuous at x equals 4; we're just differentiable for every point up to 4 because it's talking about an open interval.

So this is close. If they said differentiable over the closed interval from 2 to 4, then this would allow us to conclude because differentiability over an interval implies continuity. But I'm going to rule this one out because it does not ensure continuity at our right boundary at x equals 4.

Let's do another one of these. H is a differentiable function, and once again they've given us our phalli, what our function h is equal to at certain sampled x points, x values. Clyde was asked whether there's a solution to h of x is equal to negative 2 on the interval from the closed interval from negative 1 to 3.

This is his solution, and then we're asked is Clyde's work correct? If not, what is his mistake? And then they give us some choices. But before even looking at the choices, let us pause this video and see if what Clyde is saying makes sense. If it doesn't make sense, try to pinpoint where he messed up. What step did he make the wrong conclusion if he made any mistake at all?

All right, so the first thing he did is he said, look, negative 2, we want to see is there an x value where h of x is equal to negative 2? So first he says, well, negative 2 is between h of negative 1 and h of 3. So let's see h of negative 1 is 2, and h of 3 is negative 5.

And he is right that negative 2 sits right in here, so if we were to… Negative 2 is right in between these two values. It's right in between h of negative 1 and h of 3. Since h is differentiable, we know it is continuous on that closed interval. That's right; we were just talking about that.

Differentiability implies continuity; continuity does not always imply differentiability. You can't make that assumption, but differentiability implies continuity. If we're differentiable over an interval, we're definitely continuous on that interval. And so he's right here that so far, step one and step two, we can conclude that we are continuous over the closed interval from negative one to three.

And then he says the extreme value theorem guarantees a solution to h of x equals negative 2 on that closed interval. So this feels a little bit fishy because the extreme value theorem says that if we can meet our conditions, and we did for even the extreme value theorem, we're continuous on that closed interval.

It says that we're going to have a well-defined maximum and minimum value on that closed interval, but we don't care about minimum and maximum values here. What we care is that we take on an intermediate value in that interval and a value in between h of negative 1 and h of 3, possibly at each of those boundaries as well.

And so he's applying the wrong theorem; it should be the intermediate value theorem. I'll just abbreviate that as IVT is what he should be saying—the intermediate value theorem—because we are continuous on the closed interval. It says that we are going to take on every value between h of negative 1 and h of 3, and negative 2 is one of those values between h of negative 1 and h of 3.

And so if he just wrote intermediate value theorem instead, he would have been correct. So let's see which choice Cora is consistent with what we just wrote. He's definitely not correct. Step one wasn't correct, wasn't incorrect; two is between h of negative one and h of three. Step two was actually correct; we know that differentiability implies continuity. Step three is incorrect: yes, he applied the wrong theorem.

More Articles

View All
Space Elevator – Science Fiction or the Future of Mankind?
It’s hard to get to space. As much as we all wish there were an easy and affordable way to see our planet floating in the dark, right now, the only way is to become an astronaut or a billionaire. But there is a concept that might make it possible - while …
40 years of experience with corporate jets.
I’ve noticed that there is a few other aircraft around. This isn’t it? Yeah, it’s busy ramp right here. This is a Gulf Stream 450 over here. Wait, wait, wait! Steve, how do you know that it’s a Gulf Stream 450? After 40 years looking at these things, I k…
Anti-Federalists and Brutus No. 1 | US government and civics | Khan Academy
You first learn about American history; it sometimes seems like it might have been a very easy or somewhat obvious transition from the Articles of Confederation to the Constitution, but it was not. It was a very vigorous debate. As we’ve talked about in p…
NEW! Khan Academy's AI Tutor, Khanmigo - In Depth Demo
Hey everyone, Sal here, and I wanted to show you an in-depth demo of the new AI that we have happening throughout Khan Academy. What you’re going to see is that it exists in two ways. One is helping students and learners and teachers with many of the thi…
Confidence interval for the slope of a regression line | AP Statistics | Khan Academy
Musa is interested in the relationship between hours spent studying and caffeine consumption among students at his school. He randomly selects 20 students at his school and records their caffeine intake in milligrams and the amount of time studying in a g…
How minimum wage hurts workers (while profit and competition help them)
So this is a video primarily for—to be serious—you’ve seemed quite taken aback when I said that minimum wage regulations are usually harmful to workers. Now, this is a subject that’s already been addressed several times on YouTube, but I think it bears re…