yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Conditions for IVT and EVT: table | Existence theorems | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

We're told this table gives a few values of function f. It tells us what f of x is equal to that x is equal to 2, 3, 4, and 5. Which condition would allow you to conclude that there exists a maximum value for f over the closed interval from 2 to 4?

So pause this video and see if you can figure it out. You might already remember if we're trying to conclude that there exists something. Anytime people are talking about there exists something over an interval, we're probably dealing with some type of an existence theorem.

And if we're talking about the existence of a maximum or a minimum value for a function over an interval, that means that we're talking about the extreme value theorem. We are likely talking about the extreme value theorem, and in order to apply the extreme value theorem (sometimes abbreviated EVT), we need to know that our function is continuous over this closed interval.

So in order to do that, we need to know that f is continuous over our closed interval here, over 2 to 4, the closed interval from 2 to 4. So let's see which of these will allow us to conclude this. Because if we're able to conclude this, then we're able to apply the extreme value theorem, which tells us that there exists a maximum value for f over that interval.

All right, choice A says f is increasing in the open interval from 2 to 3 and decreasing on the open interval from 3 to 5. Now you could complete this; this doesn't tell us that we're definitely continuous over that interval, over 2 to 4. So I would rule that out. You could definitely still be discontinuous, and statement A still being true, so I'm going to rule that one out.

F is continuous over the closed interval from 2 to 5. Well, if we're continuous over the closed interval from 2 to 5, we're definitely continuous over a subset, over that, over the closed interval from 2 to 4. And so if we're able to make that, if we know that, then we can use the extreme value theorem. We've met the condition for the extreme value theorem to say that there exists a maximum value for f over that interval.

So I like this one. Let's just look at this last one. F is differentiable over the open interval from 2 to 4 and at x is equal to 2. So this is close because differentiability does imply continuity, but it isn't telling us what's happening at x equals 4. We could still be discontinuous at x equals 4; we're just differentiable for every point up to 4 because it's talking about an open interval.

So this is close. If they said differentiable over the closed interval from 2 to 4, then this would allow us to conclude because differentiability over an interval implies continuity. But I'm going to rule this one out because it does not ensure continuity at our right boundary at x equals 4.

Let's do another one of these. H is a differentiable function, and once again they've given us our phalli, what our function h is equal to at certain sampled x points, x values. Clyde was asked whether there's a solution to h of x is equal to negative 2 on the interval from the closed interval from negative 1 to 3.

This is his solution, and then we're asked is Clyde's work correct? If not, what is his mistake? And then they give us some choices. But before even looking at the choices, let us pause this video and see if what Clyde is saying makes sense. If it doesn't make sense, try to pinpoint where he messed up. What step did he make the wrong conclusion if he made any mistake at all?

All right, so the first thing he did is he said, look, negative 2, we want to see is there an x value where h of x is equal to negative 2? So first he says, well, negative 2 is between h of negative 1 and h of 3. So let's see h of negative 1 is 2, and h of 3 is negative 5.

And he is right that negative 2 sits right in here, so if we were to… Negative 2 is right in between these two values. It's right in between h of negative 1 and h of 3. Since h is differentiable, we know it is continuous on that closed interval. That's right; we were just talking about that.

Differentiability implies continuity; continuity does not always imply differentiability. You can't make that assumption, but differentiability implies continuity. If we're differentiable over an interval, we're definitely continuous on that interval. And so he's right here that so far, step one and step two, we can conclude that we are continuous over the closed interval from negative one to three.

And then he says the extreme value theorem guarantees a solution to h of x equals negative 2 on that closed interval. So this feels a little bit fishy because the extreme value theorem says that if we can meet our conditions, and we did for even the extreme value theorem, we're continuous on that closed interval.

It says that we're going to have a well-defined maximum and minimum value on that closed interval, but we don't care about minimum and maximum values here. What we care is that we take on an intermediate value in that interval and a value in between h of negative 1 and h of 3, possibly at each of those boundaries as well.

And so he's applying the wrong theorem; it should be the intermediate value theorem. I'll just abbreviate that as IVT is what he should be saying—the intermediate value theorem—because we are continuous on the closed interval. It says that we are going to take on every value between h of negative 1 and h of 3, and negative 2 is one of those values between h of negative 1 and h of 3.

And so if he just wrote intermediate value theorem instead, he would have been correct. So let's see which choice Cora is consistent with what we just wrote. He's definitely not correct. Step one wasn't correct, wasn't incorrect; two is between h of negative one and h of three. Step two was actually correct; we know that differentiability implies continuity. Step three is incorrect: yes, he applied the wrong theorem.

More Articles

View All
Couldn’t handle it...why I just hired a property manager
They wanted to charge me seven dollars to change a lightbulb. Seven dollars! That’s basically a footlong Subway sandwich straight up for changing a lightbulb. So as soon as I saw that, I’m like, no way am I ever paying seven dollars to change a lightbulb.…
Puppies and Scientists Team Up Against Zika and Other Diseases | Expedition Raw
Oh yeah, the puppies are absolutely critical to the research. Okay, you hi puppy! We are collecting blood-sucking creatures like fleas and mosquitoes because they transmit disease to humans, like the D virus, Zika virus, Bubonic plague, or Bonella. So, o…
Elon Musk : How to Build the Future
Today we have Elon Musk. Eon, thank you for joining us. Thanks for having me. Right, so we want to spend the time today talking about your view of the future and what people should work on. So, to start off, could you tell us you famously said when you…
The Physics Of Basketball | StarTalk
We’re exploring the physics of basketball, featuring my interview with NBA All-Star Kareem Abdul-Jabbar. Check it out. A rebound—in basketball, you have to get a sense of how the thing is going to bounce before the thing makes that bounce so that you can…
Geoff Ralston: The Story of Your Startup
Yeah, I just wanted to spend a couple of minutes talking about something that I think is absolutely vital to startup success. But although it’s fundamental, it is often somewhat overlooked, and that is really the invention, the creation of the story of yo…
BONUS: "FANBOYS," a mnemonic song | Conjunctions | Parts of speech| Khan Academy
Fanboy, Fanboy, the boys who carry the fan. Fanbo, Fanboy, the boys who had a plan. For the way was long and the day was hot. The boys were always prepared; neither sand nor heat would deter their feet. They did what no others had dared. Bo fanbo, th…