yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting a quadratic in factored form


3m read
·Nov 11, 2024

We are told a rocket is launched from a platform. Its height in meters, x seconds after the launch, is modeled by h of x is equal to negative 4 times x plus 2 times x minus 18.

Now the first thing they ask us is, what is the height of the rocket at the time of launch? Pause the video and see if you can figure that out. Well, what is x at the time of launch? Well, x is the number of seconds after the launch, so at the time of launch, x would be equal to zero.

So the height of the rocket when x is equal to zero, they're essentially saying, well, what is h of zero? To figure out h of zero, we just have to go back to this expression and replace all the x's with zeros. So h of 0 is going to be equal to negative 4 times 0 plus 2, which is just going to be 2 times 0 minus 18, which is just going to be negative 18.

And so let's see, this is going to be negative 4 times 0, which is 0, plus 2 times -18, thus h of 0 equals -18. So, that gives us our height.

Now let's see if I did that right. Yep, that sounds right!

Next, how many seconds after launch will the rocket hit the ground? So pause this video again and see if you can answer that. Well, what does it mean for the rocket to hit the ground? That means that the height is equal to zero.

So if you want to figure out how many seconds after launch, how many seconds is x? So we want to figure out the x when our height is equal to zero. We can set up an equation: let's make our height h of x equal to zero.

So zero is equal to negative four times x plus 2 times x minus eighteen. Well, if you have the product of three different things being equal to zero, the way you get this to be equal to zero is if at least one of these three things is equal to zero.

Well, negative four can't be equal to zero, so we could say x plus 2 equals zero. I got that from right over here. So if x plus 2 were equal to 0, then this equation would be satisfied, and that would be the situation when x is equal to negative 2. But remember, x is the number of seconds after the launch, so a negative x would mean going before the launch. So we can rule that one out.

Then we could also think about, well, x minus 18: if that's equal to 0, then this entire expression could be equal to 0. So, x minus 18 equals 0. If you add 18 to both sides, you get x is equal to 18. So 18 seconds after launch, well, we're going forward in time.

18 seconds after launch, we see that our height is zero; we have hit the ground.

Next question: how many seconds after being launched will the rocket reach its maximum height? Pause the video again and see if you can figure that out. Well, the key realization here is if you have a curve, if you have a parabola in particular, and it's going to look something like this, you're going to hit your maximum height right over here between your two zeros or between the two times that your height is zero.

If you figure out this x value and this x value, the average of the two will give you your x value—the time after launch when you're at your maximum height. Well, we already figured out what this x value is and what this x value is.

We know that h of x is equal to 0 when x is either equal to 18 or x is equal to -2. So to answer this question, we just have to go halfway between -2 and 18.

So let's do that: -2 plus 18 divided by 2 gets us what? That's going to be 16 over 2, which is going to be equal to 8. So this is right over here. This is x equals 8 seconds—the rocket is at its maximum height.

Last question: what is the maximum height that the rocket will reach? Once again, pause the video and try to answer that.

Well, we already know from the previous question that we reach our maximum height when x is equal to 8, 8 seconds after launch. And so to figure out the height, then we just have to evaluate what h of 8 is.

h of 8, remember that's what this function does; you give me any x value, any elapsed time after launch, and it will give me the height. So, 8 seconds after launch, I know I have maximum height.

To figure out that height, I just input it into the function. So h of 8 is going to be equal to negative 4 times 8 plus 2 times (8 - 18).

8 plus 2 is 10. 8 minus 18 is -10. And so you have negative 4 times negative 100, so that's going to be positive 400.

And h is given in meters, so that's its maximum height: 400 meters.

More Articles

View All
The 5 personality traits of Self-Made Millionaires
What’s up, you guys? It’s Graham here. So, let’s face it, there are enough videos already out there showing you how to make a million dollars. Theoretically, if everyone just stuck to the same advice strategically, pretty much you can guarantee you’ll be …
It's Time To Fight Back Against China!
Kevin, are you a tariff man? I am actually in the case of China. I don’t like tariffs generally, but China, we’re in an economic war with. There’s 100% that that’s the case. They don’t play by a level playing field. I do business there, so this is not an …
Sailing through the Ice Gauntlet: The Maze of Icebergs | Explorer: Lost in the Arctic
This was a town. Some kind of a whaling station. Totally abandoned now. Look at this. This is what I’ve been looking for right here. An iron bollard in the shore, where Franklin tied up their ships. And this was the last anchorage for the Franklin expedit…
IP addresses and DNS | Internet 101 | Computer Science | Khan Academy
Hi, my name is Paula, and I am a Software Engineer at Microsoft. Let’s talk about how the internet works. My job relies on networks being able to talk with one another, but back in the 1970s, there was no standard method for this. It took the work of Vinc…
Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told quadrilateral A was dilated by a scale factor of 2⁄3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we’ll do i…
Buy Great Companies that Goes Up and UP and Sit on Your A$$ Investing | Charlie Munger | 2023
Picking your shots, I mean, I think you call it sit on your ass investing. The investing where you find a few great companies and just sit on your ass because you’ve correctly predicted the future. That is what it’s very nice to be good at. A lot of what…