yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Einstein’s beef with quantum physics, explained | Jim Al-Khalili for Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.
  • Einstein is celebrated for giving us the special theory of relativity. The fact that nothing goes faster than light, time is the fourth dimension, but he didn't come up with the equations. That was the interpretation, the narrative of the equations, and it's the same with any other theory in physics.

With quantum mechanics, it's different. We have the equations of quantum mechanics, but we can't agree on what that equation means. Schrodinger's equation being the most famous one, we can crank the handle and produce numbers from the equation, but the narrative, the story, the explanation is still something that we are arguing about. And that bugs me.

By the end of the 19th century, it was already known that we needed some new physics to explain mysterious phenomena - X-rays - like radio activity, that energy seemed to be coming out of nowhere, to understand the behavior or the structure of the atom. And so when quantum mechanics came along, it wasn't because physicists were sitting, scratching their heads thinking, "There must be some deeper understanding of the nature of reality. I know, let's come up with quantum mechanics." It was forced on physicists because of experimental results that were inexplicable.

It's a fuzzy, probabilistic world. Things are never behaving in one way for certain; atoms can have two energies at the same time, electrons can be in two places at the same time, particles aren't discreet, little lumps; they can sometimes behave like spread-out waves of probability. It's really down at a level far beyond anything that we can visualize or imagine.

If we think about everyday objects, a tennis ball, for example, subject to the laws of Newtonian mechanics; you drop down, orders of magnitude, down to a millimeter, down to a micrometer, down to the scale of individual cells or bacteria. Ultimately, when you get down to something like a billionth of a meter, then you start to encounter the fuzziness of the quantum world.

The founding fathers of quantum mechanics in the 1920s, people like the Danish Physicist, Niels Bohr, Werner Heisenberg, Wolfgang Pauli - and they realized they could make predictions for the results of measurements, but you only make the connection with the real world if you look. So that's how they got away with not needing a narrative, the 'shut up and calculate interpretation.' More correctly, it's known as the 'Copenhagen narrative.'

But now, many physicists, including myself, argue that it's not a narrative at all; it's a bury your head in the sand approach. Einstein was very unhappy about this, by the way; he said, "No, look, the job of physics is to know and understand how the world is, not just to make predictions about the results of experiments and that sort of operationalist view. Well, fine, that's useful but that doesn't give us real understanding." That's why we still need a narrative.

The knowledge of quantum mechanics together with Einstein's theories of relativity really gave us the modern world. We wouldn't have developed an understanding of materials and how they conduct electricity, so we wouldn't have understood semiconductors; we wouldn't have developed silicon chips; therefore, we wouldn't have computers. I wouldn't be talking here in this medium today were it not for our quantum understanding.

But there are aspects of the quantum world that are more mysterious. Quantum entanglement, for example, the idea that let's say, two electrons that are separated in space can nevertheless somehow behave in a coordinated way. There are speculative ideas about whether space itself is connected together via quantum entanglement.

We don't all need to be experts in quantum mechanics; not even the smartest quantum physicists knows how stuff goes on inside their smartphone. But we are going to be developing ideas like quantum cryptography, quantum computing, quantum sensors - these are ideas and technologies that are going to affect us in our daily lives, so we do need to have enough of an appreciation of the science simply to know what to trust, who to trust. As we peel back layers of t...

More Articles

View All
Karn Saroya on the Capital-Light Way to Start an Insurance Business
All right, and so today we have Karnes Roya, the CEO of Cover, which was in the Winter 2016 batch of YC. So, Karnes, what does Cover do for us? “All, thanks for hosting me! I appreciate it. So, you can think of Cover as a multi-line national property ins…
what exchange students don't tell you
During my exchange year, I had a surgery, and here are the photos of that surgery. When it comes to exchange, there is something that most of the exchange students don’t tell you, so today I’m gonna spill all of the tea about student exchange. Hi guys, i…
Article V of the Constitution | US government and civics | Khan Academy
Hey, this is Kim from Khan Academy, and today I’m learning about Article 5 of the U.S. Constitution, which describes the Constitution’s amendment process. To learn more about Article 5, I talked to two experts: Professor Michael Rappaport, who is the Darl…
Getting Vaccinated at the Coolest Place 😎
Good morning, internet! Today is a day I thought it would take many years to arrive, and never have I been happier to be wrong. Today is my COVID vaccination day, and I’m heading over to my appointment, which just so happens to be at the coolest place to …
Freedom According to the Declaration Of Independence | The Story of Us
I’m headed to the American Philosophical Society in Philadelphia to meet with its librarian Patrick Spiro. He studies documents dating back to the time of the country’s founding. What you’re looking at here is one of the first printings of the Declaration…
Strong acid–strong base titrations | Acids and bases | AP Chemistry | Khan Academy
Hydrochloric acid is an example of a strong acid, and sodium hydroxide is an example of a strong base. Let’s say we are titrating an unknown concentration of hydrochloric acid with a known concentration of sodium hydroxide. Let’s say it’s 0.20 molar. Beca…