yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
REVIEWING MY 2008 LOTUS EXIGE S240
What’s up you guys? My name is Graham, and this is a review of the 2008 Lotus Exige S 240. By the way, just a quick background: Lotus is the brand that got me into cars to begin with. Before I saw a Lotus, I didn’t give a [ __ ] about cars. Well, my first…
How To Get Rich According to Naval Ravikant
There are a million ways to make a million dollars, and this is the sound of all. Ravi Khan does it. For those of you who don’t know, Naval Ravikant is a philosopher and entrepreneur whose insights on happiness, wealth creation, and personal growth have g…
Consumer Startup Metrics | Startup School
[Music] Welcome to metrics for Consumer startups. In our video on metrics for B2B startups, we talked about net dollar retention and gross margin metrics that are most important for B2B companies. Now we’re going to dig into metrics that are particularly …
15 RULES of CHANGE
Change is inevitable. Many people have tried opposing it, only to learn that lesson the hard way. You’re consuming this content because a big change is about to happen in your life. This resource will guide you through it. Here are 15 Rules of Change. Ru…
Embracing Death | Explorer
It’s interesting in our society, and you know how we do things. You know, we plan for so many life celebratory events. We plan for a wedding, we plan for a baby, we plan for a graduation from high school, from college. We plan for our career. But the one…
BULLET TIME FAIL (Slowmo) - Smarter Every Day 101
Surprised you had it running at full speed. Hey, it’s me, Destin. Welcome back to Smarter Every Day. This is Mark Rober. Mark is using me. Is this true or false? - [laugh] - Mark is using me to access your subscribers. I’m not really happy about this, Mar…