yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
What Causes The Phases Of The Moon?
[Applause] Now I’ve been around Sydney and I’ve asked people what causes the phases of the moon, and you know what they say? How do we get the faces of the Moon? Uh, because of the Earth blocks the light that comes from the Sun. A full moon is basically w…
7 Most ANNOYING Online Gamers: V-LIST #3
Hey everyone! I’m Lacy, and this is BTW on Bauce. This week, I’m talking about online gaming, specifically the people that you meet online. You know exactly who I’m talking about. They’re the people that are always there, and they always annoy you, and ye…
Misconceptions About Falling Objects
Now I want you to make a prediction: in my left hand I have a standard size basketball, and in my right hand a 5 kg medicine ball. If I drop them both at exactly the same time, which one will hit the ground first? Ah, this is a trick one, isn’t it? The h…
Constructing a Cruise Ship | Making the Disney Wish | Mini Episode 1
We are building the most technologically advanced, the most beautiful cruise ships ever. What the Disney Wish is the first of its kind, never been done before. So how do you build a Disney Wish? It’s a first-in-class ship, so you start with a white piece…
Is It Too Late To Stop Climate Change? Well, it's Complicated.
Climate change is just too much. There’s never any good news. Only graphs that get more and more red and angry. Almost every year breaks some horrible record, from the harshest heat waves to the most rapid glacier melt. It’s endless and relentless. We’ve…
Species and the environment | Mechanisms of evolution | High school biology | Khan Academy
So we tend to view evolution and natural selection and the formation of new species, which is often called speciation, as a slow process that could take tens or hundreds of thousands of years, or in many cases millions of years. And that’s why it’s always…