yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
Discovering Homo Naledi: Journey to Find a Human Ancestor, Part 3 | Nat Geo Live
Lee: Extraordinary people doing extraordinary things. By the end of a 21-day excavation, we had discovered the richest early Hominid site ever discovered in the history of the planet. This site is one mile away from the site of Sterkfontein. It’s less tha…
Fraction multiplcation on the number line
So we’re going to think about, in this video, is multiplying fractions. So let’s say that we wanted to take two-thirds, and we want to multiply it by four. What is this going to be equal to? Pause this video and try to think about it on your own. All rig…
Why We Need to Change How We Combat Rabies | Nat Geo Live
( Intro music ) Daniel: This is a bat that feeds exclusively on blood, as the name implies. And the way that that bat feeds is to make a razor sharp incision into the animal that it is feeding on and then it uses a specially grooved tongue to lap up bloo…
Unraveling a Mapmaker’s Dangerous Decision | Podcast | Overheard at National Geographic
So I told them that they didn’t have a chance, and for the sake of their wives and children, they should vacate the area and go back. Both of them sunk, and at that time I heard the cocking of weapons. Once both of them cocked their weapons, I knew they m…
The Nature of Nature | National Geographic
[Music] Too few can feel. I am the sea and the sea is me. Growing up in Catalonia in the 1970s, every Sunday I would sit in front of la caja tonta, the dumb box, watching my hero, Jack Cousteau. [Music] The exotic places, the daring underwater explorers, …
Pristine Seas: The Global Expedition Launches in the Pacific | National Geographic Society
The global Expedition is kicking off with our own purpose modified vessel, the MV Argo. This is the largest marine conservation effort ever attempted to protect the world’s ocean, starting in the Pacific. [Music] Life on Earth wouldn’t exist without hea…