yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
Harry Zhang with Kevin Hale on Building Lob to Automate the Offline World
Today we have Harry Zhang, co-founder of Lob. Lob makes APIs for companies to send letters and postcards. So, Kevin has a question for you. “I’m trying to think back to when you guys applied to YC. You didn’t have almost anything. Like, I would say it wa…
Example of hypotheses for paired and two-sample t tests | AP Statistics | Khan Academy
The Olympic running team of Freedonia has always used Zeppo’s running shoes, but their manager suspects Harpo’s shoes can produce better results, which would be lower times. The manager has six runners; each run two laps: one lap wearing Zeppo’s and anoth…
What Happened To My $100,000 Remodel
What’s up you guys, it’s Graham here. So I know a lot of you guys have been asking for an update on the status of my now over $100,000 renovation. I guess it’s about time I give everyone an update and discuss what’s going on because it’s been over a month…
How to Build An MVP | Startup School
[Music] All right, uh today I’d like to talk to you about how to build an MVP or a minimum viable product. So if you haven’t seen this before, this is a meme that we love to talk about when trying to help founders with their MVP. It’s called the midwit me…
Sketching exponentials - examples
Now we’re going to take the ideas from the last video and learn how to sketch in these exponentials really rapidly. Now I want to move this up, and we’ll do some a couple of examples. Here’s an example circuit I’ve already set up. It’s an RC circuit. Thi…
How To SLEEP With Mario!! -- Mind Blow 10
[Music] Brain controlled robot arm. In four years, and Pokémon’s Ekans backwards is Snake. Arbok is Cobra, and Muk backwards is uh, Bees. Sauce! Kevin here, this is mind blow. Okay, so connect hacks let you control your TV with your hands, but the NES ac…