yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
Parallel resistors (part 2) | Circuit analysis | Electrical engineering | Khan Academy
In the last video, we introduced the idea of parallel resistors. These two resistors are in parallel with each other because they share nodes, and they have the same voltage across them. So, that configuration is called a parallel resistor. We also showe…
2 step estimation example
We are told a teacher bought 12 sheets of stickers to use on the homework of her students. Each sheet had 48 stickers. At the end of the year, the teacher had 123 stickers remaining. Which is the best estimate for the number of stickers the teacher used? …
Your A.I. Doctor Will See You Now...
[Music] Around one in five people around the world will develop cancer in their lifetime, with one in nine men and one in 12 women dying from the disease. Basically, for every six people that die around the world, one of them dies from cancer. Cancer is o…
Marcus Aurelius - How to Stay Calm in Uncertain Times
When life feels out of control, it’s important to know how to stay calm, and in his Meditations, Marcus Aurelius, the last of the five good emperors of Rome, offers us several insights on how to do this. By practicing the following five virtues, you’ll be…
The Murder of Kim Jong-un's Brother | North Korea: Inside the Mind of a Dictator
♪ ♪ NARRATOR: February 13th 2017. Kuala Lumpur International Airport. Kim Jong-un’s brother enters the terminal, unaware that two female assassins are also at the airport. Now, for the first time on television, one of the assassins tells her full extraor…
Supervenience
One of the questions was, “Um, how is it that logic supervenes on our brains?” And I think it’s a good question. Um, I think it’s a question that we’re not currently in a position to give a full answer to. Um, for that, our understanding of how the bra…