yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
15 Ways to Stop Procrastinating
Procrastination is a common habit, right? And many of us find ourselves struggling with this tendency to postpone what needs to be done, whether it’s a task from work, doing your laundry, that pan that needs to be washed, or a blanket you have to move fro…
Humpback Whale Migration | Shark vs Whale
NARRATOR: The migrating humpbacks have only one objective now, the safe house of Mozambique. It’s a whale-birthing paradise far from the usual hunting grounds of great white sharks. Vulnerable baby whales can nurse, grow, and gain strength. The adults hav…
You Don't Need Dopamine Detox
If you’re watching this video on your phone, chances are that before I’m done talking, you’ll get a notification, a text from a friend, a like on a recent post you just shared, or a new follower or subscriber. When this happens, do you feel a rush, a sens…
Node voltage method (steps 1 to 4) | Circuit analysis | Electrical engineering | Khan Academy
We’re going to talk about a really powerful way to analyze circuits called the node voltage method. Before we start talking about what this method is, we’re going to talk about a new term called a node voltage. So far, we already have the idea of an elem…
Are We Running Out of Sand?
[Music] It can be easy to take something for granted that every time you see it, it seems to go on forever. It’s like an infinite path to the horizon, a landscape that never ends. This is sand. And even though just a simple trip to the beach can make it f…
Modeling ticket fines with exponential function | Algebra II | Khan Academy
Sarah Swift got a speeding ticket on her way home from work. If she pays her fine now, there will be no added penalty. If she delays her payment, then a penalty will be assessed for the number of months t that she delays paying her fine. Her total fine f …