yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
Greenhouse effect and greenhouse gases | High school biology | Khan Academy
In this video, we’re going to talk about the greenhouse effect and also the greenhouse gases which cause the greenhouse effect. Now let’s just start with a basic idea. Imagine if Earth had no atmosphere. What would happen? Well, you have the sun, which is…
PEOPLE WON'T WORK IN WAR-TORN CITIES
The economies change radically. The problem with saying everybody has to work in the office is you won’t be able to hire the best talent. When we went out for financial services people in our operating company, the best talent told us, “If I have to come …
How To Spot A LIAR
Everybody lies; the only variable is about what. This is not just a quote taken from Dr. House; it’s a fact that all of us must accept, whether we like it or not. The average human hears between 10 to 200 lies a day, depending on the number of social inte…
Vlog: I counted almost $30,000,000 worth of cars in this parking lot!
What’s up you guys? It’s Graham here. So it seems like every 10,000 subscribers, I end up doing another vlog, and since I just hit 30,000 subscribers, here’s another vlog! I actually think it’s more like 34,000 by the time I’m actually doing this. I’m pro…
Using text features to locate information | Reading | Khan Academy
Hello readers! Today we’re going to talk about how to use text features to find information in a piece of nonfiction writing, like a textbook, an encyclopedia entry, or a news article. Information in these texts is organized with a specific purpose in min…
Flow of energy and matter through ecosystems | High school biology | Khan Academy
Let’s think a little bit about how energy flows and how matter is recycled in an ecosystem. So, the whole time that we go through this video, think about these two ideas. And then, even after watching this video, look at ecosystems around yourself, even o…