yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
15 Obsessions That Translate to Fortunes
You know, some people have the right skill set to get rich, but they focus on the wrong damn thing. In business, we call this a high-level skill on a low-level opportunity. Believe it or not, some of you might have what it takes to get rich faster than mo…
Why $2.3 Million Isn't Enough
What’s the guys? It’s Graham here. So, I just came across an article by CNN with the headline, “Is Two Million Dollars Enough to Feel Wealthy?” That really got me thinking: how much money does someone actually need in order to feel rich? Just think about …
Analyzing related rates problems: equations (trig) | AP Calculus AB | Khan Academy
A 20 meter ladder is leaning against a wall. The distance ( x(t) ) between the bottom of the ladder and the wall is increasing at a rate of 3 meters per minute. At a certain instant ( t_0 ), the top of the ladder is a distance ( y(t_0) ) of 15 meters from…
How to name a boat ........ How I named my kayak
[Music] So I would, uh, like to tell you the story about how I named my boat. You can see I have a kayak, a nice green one, and, uh, as every man knows, your boat must have a name. So I decided to ask my wife what she thought I should name my boat. I had…
Path of Stoicism: How to become a Stoic in the Modern World
We’re all pretty used to rain. We’re either prepared for it with an umbrella or raincoat, or just get wet. Rarely does it genuinely upset us. But what about when it rains for days and the streets flood so you can’t go outside? Or when you realize you can’…
Warren Buffett: The Big Problem with Dividend Investing
Why won’t you pay a dividend to your shareholders? Well, we think our shareholders 5 years from now will be wealthier counting what they would get from the reinvestment of the dividend. We think they’ll be wealthier if we hold on to the money now. We may…