yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probabilities from density curves | Random variables | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values from 1 to 5.

Find the probability that X is less than four. So, X can go from one to four. There's no probability that it'll be less than one, so you know the entire area under the density curve is going to be one. If we can find the fraction of the area that meets our criteria, then we know the answer to the question.

What we're going to look at is we want to go from 1 to 4. The reason why I know we can start at one is there's no probability; there's zero chances that I'll get a value less than one. We see that from the density curve. So we just need to think about what is the area here. What is this area right over here? Well, this is just a rectangle where the height is 0.25 and the width is 1 to 3.

So our area is going to be 0.25 * 3, which is equal to 0.75. So, the probability that X is less than four is 0.75, or you could say it's a 75% probability.

Let's do another one of these with a slightly more involved density curve. A set of middle school students' heights are normally distributed with a mean of 150 cm and a standard deviation of 20 cm. Let H be the height of a randomly selected student from this set. Find and interpret the probability that H, that is, the height of a randomly selected student from the set, is greater than 170 cm.

So, let's first visualize the density curve. It is a normal distribution. They tell us that the mean is 150 cm, so let me draw that. The mean is 150, and they also say that we have a standard deviation of 20 cm. So, 20 cm above the mean, one standard deviation above the mean is 170, and one standard deviation below the mean is 130.

We want the probability of, if we randomly select from these middle school students, what's the probability that the height is greater than 170? So that's going to be this area under this normal distribution curve; it's going to be that area.

How can we figure that out? Well, there are several ways to do it. We know that this is the area above one standard deviation above the mean. You could use a z-table, or you could use some generally useful knowledge about normal distributions. That's that the area between one standard deviation below the mean and one standard deviation above the mean, this area right over here, is roughly 68%. It's closer to 68.2%; for our purposes, 68 will work fine.

If we're looking at just from the mean to one standard deviation above the mean, it would be half of that. So, this is going to be approximately 34%. Now we also know that for a normal distribution, the area below the mean is going to be 50%. So we know all of that is 50%, and so the combined area below 170, below one standard deviation above the mean, is going to be 84% or approximately 84%.

That helps us figure out what is the area above one standard deviation above the mean, which will answer our question. The entire area under this density curve, under any density curve, is going to be equal to one. So, if the entire area is one, this green area is 84% or 0.84. Well then, we just subtract that from one to get this blue area. So this is going to be 1 - 0.84, or I'll say approximately, and so that's going to be approximately 0.16.

If you want a slightly more precise value, you could use a z-table. The area below one standard deviation above the mean will be closer to about 84.1%, in which case this would be about 15.9% or 0.159. But you can see that we got pretty close by knowing the general rule that it's roughly 68% between one standard deviation below the mean and one standard deviation above the mean for a normal distribution.

More Articles

View All
Interpreting change in exponential models: with manipulation | High School Math | Khan Academy
Ocean sunfishes are well known for rapidly gaining a lot of weight on a diet based on jellyfish. The relationship between the elapsed time ( t ) in days since an ocean sunfish is born and its mass ( m(t) ) in milligrams is modeled by the following functio…
A Brief History of How Plastic Has Changed Our World | National Geographic
Plastics are being used to such an extent throughout the world that we may well ask what was used before its discovery. Before 1950, plastic was barely a part of American life. So how did our culture become so plastic? Modern plastic didn’t really get it…
Why Life Seems to Speed Up as We Age
I remember when I was a kid waiting an hour for my favorite TV show to come on, which was Sharon, Lois & Bram. That felt like eternity, but as I’ve gotten older, everything seems to have sped up. Time is going much faster. That’s something virtually e…
Transformations, part 2 | Multivariable calculus | Khan Academy
So in the last video, I introduced Transformations and how you can think about functions as moving points in one space to points in another. Here, I want to show an example of what that looks like when the input space is two-dimensional. This over here i…
Regional attitudes about slavery, 1754-1800 | US history | Khan Academy
This is a chart that shows the percentage of the total population of each of these colonies and then later states that was made up by enslaved Africans starting in the year 1754, which will show in purple, and comparing that to the year 1800, which we’ll …
What EVERYONE Needs To Do With Their Money ASAP
What’s up guys, it’s Graham here. So I want to start this video off on a bit of a serious note because if economic growth begins to slow down, inflation persists, and stocks head for a bear market, it’s more important than ever right now to make sure you’…