yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Is light a particle or a wave? - Colm Kelleher


3m read
·Nov 9, 2024

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

You look down and see a yellow pencil lying on your desk. Your eyes, and then your brain, are collecting all sorts of information about the pencil: its size, color, shape, distance, and more. But, how exactly does this happen?

The ancient Greeks were the first to think more or less scientifically about what light is and how vision works. Some Greek philosophers, including Plato and Pythagoras, thought that light originated in our eyes and that vision happened when little, invisible probes were sent to gather information about far-away objects. It took over a thousand years before the Arab scientist, Alhazen, figured out that the old, Greek theory of light couldn't be right. In Alhazen's picture, your eyes don't send out invisible, intelligence-gathering probes; they simply collect the light that falls into them.

Alhazen's theory accounts for a fact that the Greeks couldn't easily explain: why it gets dark sometimes. The idea is that very few objects actually emit their own light. The special, light-emitting objects, like the sun or a lightbulb, are known as sources of light. Most of the things we see, like that pencil on your desk, are simply reflecting light from a source rather than producing their own. So, when you look at your pencil, the light that hits your eye actually originated at the sun and has traveled millions of miles across empty space before bouncing off the pencil and into your eye, which is pretty cool when you think about it.

But, what exactly is the stuff that is emitted from the sun and how do we see it? Is it a particle, like atoms, or is it a wave, like ripples on the surface of a pond? Scientists in the modern era would spend a couple of hundred years figuring out the answer to this question. Isaac Newton was one of the earliest. Newton believed that light is made up of tiny, atom-like particles, which he called corpuscles. Using this assumption, he was able to explain some properties of light. For example, refraction, which is how a beam of light appears to bend as it passes from air into water.

But, in science, even geniuses sometimes get things wrong. In the 19th century, long after Newton died, scientists did a series of experiments that clearly showed that light can't be made up of tiny, atom-like particles. For one thing, two beams of light that cross paths don't interact with each other at all. If light were made of tiny, solid balls, then you would expect that some of the particles from Beam A would crash into some of the particles from Beam B. If that happened, the two particles involved in the collision would bounce off in random directions. But, that doesn't happen. The beams of light pass right through each other, as you can check for yourself with two laser pointers and some chalk dust.

For another thing, light makes interference patterns. Interference patterns are the complicated undulations that happen when two wave patterns occupy the same space. They can be seen when two objects disturb the surface of a still pond, and also when two point-like sources of light are placed near each other. Only waves make interference patterns; particles don't. And, as a bonus, understanding that light acts like a wave leads naturally to an explanation of what color is and why that pencil looks yellow.

So, it's settled then, light is a wave, right? Not so fast! In the 20th century, scientists did experiments that appear to show light acting like a particle. For instance, when you shine light on a metal, the light transfers its energy to the atoms in the metal in discrete packets called quanta. But, we can't just forget about properties like interference, either. So these quanta of light aren't at all like the tiny, hard spheres Newton imagined. This result, that light sometimes behaves like a particle and sometimes behaves like a wave, led to a revolutionary new physics theory called quantum mechanics.

So, after all that, let's go back to the question, "What is light?" Well, light isn't really like anything we're used to dealing with in our everyday lives. Sometimes it behaves like a particle and other times it behaves like a wave, but it isn't exactly like either.

More Articles

View All
Warren Buffett: Why $100k is the MAGIC Number to Getting Rich (Life Changing Advice)
Listen closely because I’m about to let you in on the secret to getting rich. If you just clicked on this video, it’s fair to say that you want to one day become a millionaire. But what if I told you that the hardest part of becoming a millionaire isn’t h…
Debunking the 'Pointless' Education Myth | StarTalk
People think that when they take math in school, there’s the common response like, “I will never need to use this for the rest of my life,” as they learn trig identities or the Pythagorean theorem or whatever it is that we all remember learning, feeling p…
Justification using second derivative: maximum point | AP Calculus AB | Khan Academy
We’re told that given that h prime of negative four is equal to zero, what is an appropriate calculus-based justification for the fact that h has a relative maximum at x is equal to negative four? So, right over here we actually have the graph of our fun…
The Battle for the Soul of Artificial Intelligence | Podcast | Overheard at National Geographic
[Music] I’m a sci-fi nut and one of my favorite books is The Caves of Steel by Isaac Asimov. It’s all about this hard-boiled grizzly detective who gets assigned a strange new partner, a robot. I’ve always wanted a robot partner, and now through the magic…
Finding average rate of change of polynomials | Algebra 2 | Khan Academy
We are asked what is the average rate of change of the function f, and this function is f. Up here is the definition of it over the interval from negative two to three, and it’s a closed interval because they put these brackets around it instead of parent…
How to buy a private jet
This is 100% scale of the G stream 550. That’s the three sections I’m talking about. You got the kitchen door here, the galley door, and most airplanes the front section has these four single seats. This is really the normal setup. Again, the normal setu…