yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding decreasing interval given the function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have the function ( f(x) = x^6 - 3x^5 ) and we want to know over what intervals is ( f ) decreasing. We're going to do it without even having to graph ( y = f(x) ). The way we do that is we look at the derivative of ( f ) with respect to ( x ) and think about when that is less than zero. If the rate of change of ( f ) with respect to ( x ) is less than zero, well, over those intervals it will be decreasing.

So let's first take the derivative. So ( f'(x) ) is going to be equal to, just using the power rule here, it's going to be ( 6x^5 - 15x^4 ). Now, let's think about when this is going to be less than zero over what intervals ( 6x^5 - 15x^4 < 0 ).

So, we could factor out a ( 3x^4 ). So, ( 3x^4(2x - 5) < 0 ). Did I do that right? Let's see. If I were to distribute it, ( 32 = 6 ), ( x^4x = x^5 ), and ( 3*5 = 15 ), ( x^4 ) yep, that's right.

So if I'm taking the product of two things and I want it to be less than zero, well, there’s only one way for that to happen: either the first thing is positive and the second is negative, or the first is negative and the second is positive. So let's analyze that.

So, either ( 3x^4 < 0 ) and ( 2x - 5 > 0 ), or let me just put the or in a separate color here, or ( 3x^4 > 0 ) and ( 2x - 5 < 0 ).

So let's see. For ( 3x^4 < 0 ), well, if we divide both sides by three, this is just going to be ( x^4 < 0 ). Is there any way for something to the fourth power to be less than zero? Well, we're assuming we're dealing with real numbers here, and any real number to the fourth power is going to be greater than or equal to zero. So it's actually impossible for something to the fourth power to be less than zero. We can rule out this first case.

So we can rule out that first case right over there.

Now, we're only going to worry about the second case. So, ( 3x^4 > 0 ) will happen as long as ( x \neq 0 ). This is because for any other ( x ), this will be true. ( x ) could be negative; you take it to the fourth power, multiply it by three, it will be greater than zero. So this is really just the condition that ( x ) cannot be equal to zero.

Now, let's see the second one: ( 2x - 5 < 0 ). That means ( 2x < 5 ), and then ( x < \frac{5}{2} ). So as long as ( x < \frac{5}{2} ) and ( x \neq 0 ), this function will be decreasing.

If we wanted to write it in terms of intervals, we could say ( x < 0 ) or ( 0 < x < \frac{5}{2} ).

So ( x < 0 ) is all the negative values, and then we’re essentially just excluding zero and going all the way to ( \frac{5}{2} ).

Remember, all I did is I said, well, when is our first derivative negative? Because if the first derivative is negative, then the rate of change of ( f ) with respect to ( x ) is negative or ( f ) is decreasing as ( x ) is increasing.

More Articles

View All
Multiplying 3-digit by 2-digit numbers | Grade 5 (TX TEKS) | Khan Academy
Let’s get a little bit of practice estimating adding large numbers. So, if someone were to walk up to you on the street and say quickly, “Roughly, what is 49379 plus 250218?” What is that roughly equal to? Sometimes people will put this little squiggly eq…
How to Be a Great Founder with Reid Hoffman (How to Start a Startup 2014: Lecture 13)
So when I looked through the syllabus to this class and thought about what I could possibly add that would be useful in addition to the very skills, one of the things I’ve been thinking about has been how do you think about yourself as a founder? How do y…
Worked example: finding a Riemann sum using a table | AP Calculus AB | Khan Academy
Imagine we’re asked to approximate the area between the x-axis and the graph of f from x equals 1 to x equals 10 using a right Riemann sum with three equal subdivisions. To do that, we are given a table of values for f. I encourage you to pause the video …
Homeroom with Sal and Wendy Kopp - Wednesday, September 15
Hi everyone! Sal Khan here from Khan Academy. Welcome to the Homeroom live stream! It’s been a while since we did one, but we’re back and we have an amazing guest, Wendy Kopp, CEO of Teach For All, also the founder of Teach For America. We’re going to ta…
A message from Sal on school closures and remote learning on Khan Academy.
Hi everyone, Sal here from Khan Academy. I am back in the walk-in closet where Khan Academy all began, socially distanced, obviously. The entire globe is going through a very unusual crisis right now, and as part of that crisis, you know people are worri…
Why Machines That Bend Are Better
What do this satellite thruster, plastic tool, and micro mechanical switch have in common? Well, they all contain components that bend, so-called compliant mechanisms. This episode was sponsored by SimpliSafe. More about them at the end of the show. Now …