yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding decreasing interval given the function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have the function ( f(x) = x^6 - 3x^5 ) and we want to know over what intervals is ( f ) decreasing. We're going to do it without even having to graph ( y = f(x) ). The way we do that is we look at the derivative of ( f ) with respect to ( x ) and think about when that is less than zero. If the rate of change of ( f ) with respect to ( x ) is less than zero, well, over those intervals it will be decreasing.

So let's first take the derivative. So ( f'(x) ) is going to be equal to, just using the power rule here, it's going to be ( 6x^5 - 15x^4 ). Now, let's think about when this is going to be less than zero over what intervals ( 6x^5 - 15x^4 < 0 ).

So, we could factor out a ( 3x^4 ). So, ( 3x^4(2x - 5) < 0 ). Did I do that right? Let's see. If I were to distribute it, ( 32 = 6 ), ( x^4x = x^5 ), and ( 3*5 = 15 ), ( x^4 ) yep, that's right.

So if I'm taking the product of two things and I want it to be less than zero, well, there’s only one way for that to happen: either the first thing is positive and the second is negative, or the first is negative and the second is positive. So let's analyze that.

So, either ( 3x^4 < 0 ) and ( 2x - 5 > 0 ), or let me just put the or in a separate color here, or ( 3x^4 > 0 ) and ( 2x - 5 < 0 ).

So let's see. For ( 3x^4 < 0 ), well, if we divide both sides by three, this is just going to be ( x^4 < 0 ). Is there any way for something to the fourth power to be less than zero? Well, we're assuming we're dealing with real numbers here, and any real number to the fourth power is going to be greater than or equal to zero. So it's actually impossible for something to the fourth power to be less than zero. We can rule out this first case.

So we can rule out that first case right over there.

Now, we're only going to worry about the second case. So, ( 3x^4 > 0 ) will happen as long as ( x \neq 0 ). This is because for any other ( x ), this will be true. ( x ) could be negative; you take it to the fourth power, multiply it by three, it will be greater than zero. So this is really just the condition that ( x ) cannot be equal to zero.

Now, let's see the second one: ( 2x - 5 < 0 ). That means ( 2x < 5 ), and then ( x < \frac{5}{2} ). So as long as ( x < \frac{5}{2} ) and ( x \neq 0 ), this function will be decreasing.

If we wanted to write it in terms of intervals, we could say ( x < 0 ) or ( 0 < x < \frac{5}{2} ).

So ( x < 0 ) is all the negative values, and then we’re essentially just excluding zero and going all the way to ( \frac{5}{2} ).

Remember, all I did is I said, well, when is our first derivative negative? Because if the first derivative is negative, then the rate of change of ( f ) with respect to ( x ) is negative or ( f ) is decreasing as ( x ) is increasing.

More Articles

View All
Diane Greene at Startup School 2013
Hi there. I’ve been in this auditorium once before. I think it was before you were born; it was 1989. I was working for Tandem Computers, which was one of the biggest companies in Silicon Valley. The very wonderful, irreverent founder CEO was holding an a…
Philosophy for Breakups | BUDDHISM
That breakups can be horrifyingly painful isn’t a secret to people who have gone through one. The amount of suffering some people experience after a breakup is a symptom that something about this situation isn’t quite right. From a Buddhist point of view…
Warren Buffett's SECRET to Making Millions from IRRATIONAL BEHAVIOUR!
There’s a certain irony in that we will, we would do the best over decades if we operated in a market where people operated very foolishly. The more people respond to short-term events and exaggerated things, or anything that causes people to get wildly e…
STOP SAVING MONEY | The Warning Of Hyper Inflation
What’s up? Grandma’s guys here. So, there’s no easy way to say this, but let’s just rip off the Band-Aid. Yes, it’s true, I’ve worn the same shirt now for the last few days so I wouldn’t have to do laundry. Oh, and yeah, inflation is spiraling out of cont…
2005 Berkshire Hathaway Annual Meeting (Full Version)
Morning. I’m Warren. He’s Charlie. We work together. We really don’t have any choice because he can hear and I can see. I want to first thank a few people. That cartoon was done by Andy Hayward, who has done them now for a number of years. He writes them,…
AI Can Literally Lend You a Hand #kurzgesagt #shorts
AI can literally lend you a hand, but hands are complicated. If your hand were a video game character, you’d need 27 buttons to control it. Millions of possible button combinations need to be translated to a robotic hand in real time, with as little delay…