yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding decreasing interval given the function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have the function ( f(x) = x^6 - 3x^5 ) and we want to know over what intervals is ( f ) decreasing. We're going to do it without even having to graph ( y = f(x) ). The way we do that is we look at the derivative of ( f ) with respect to ( x ) and think about when that is less than zero. If the rate of change of ( f ) with respect to ( x ) is less than zero, well, over those intervals it will be decreasing.

So let's first take the derivative. So ( f'(x) ) is going to be equal to, just using the power rule here, it's going to be ( 6x^5 - 15x^4 ). Now, let's think about when this is going to be less than zero over what intervals ( 6x^5 - 15x^4 < 0 ).

So, we could factor out a ( 3x^4 ). So, ( 3x^4(2x - 5) < 0 ). Did I do that right? Let's see. If I were to distribute it, ( 32 = 6 ), ( x^4x = x^5 ), and ( 3*5 = 15 ), ( x^4 ) yep, that's right.

So if I'm taking the product of two things and I want it to be less than zero, well, there’s only one way for that to happen: either the first thing is positive and the second is negative, or the first is negative and the second is positive. So let's analyze that.

So, either ( 3x^4 < 0 ) and ( 2x - 5 > 0 ), or let me just put the or in a separate color here, or ( 3x^4 > 0 ) and ( 2x - 5 < 0 ).

So let's see. For ( 3x^4 < 0 ), well, if we divide both sides by three, this is just going to be ( x^4 < 0 ). Is there any way for something to the fourth power to be less than zero? Well, we're assuming we're dealing with real numbers here, and any real number to the fourth power is going to be greater than or equal to zero. So it's actually impossible for something to the fourth power to be less than zero. We can rule out this first case.

So we can rule out that first case right over there.

Now, we're only going to worry about the second case. So, ( 3x^4 > 0 ) will happen as long as ( x \neq 0 ). This is because for any other ( x ), this will be true. ( x ) could be negative; you take it to the fourth power, multiply it by three, it will be greater than zero. So this is really just the condition that ( x ) cannot be equal to zero.

Now, let's see the second one: ( 2x - 5 < 0 ). That means ( 2x < 5 ), and then ( x < \frac{5}{2} ). So as long as ( x < \frac{5}{2} ) and ( x \neq 0 ), this function will be decreasing.

If we wanted to write it in terms of intervals, we could say ( x < 0 ) or ( 0 < x < \frac{5}{2} ).

So ( x < 0 ) is all the negative values, and then we’re essentially just excluding zero and going all the way to ( \frac{5}{2} ).

Remember, all I did is I said, well, when is our first derivative negative? Because if the first derivative is negative, then the rate of change of ( f ) with respect to ( x ) is negative or ( f ) is decreasing as ( x ) is increasing.

More Articles

View All
Stunning Stone Monuments of Petra | National Geographic
Deep within Jordan’s desert canyons lies an ancient treasure: the stone city of Petra. This massive hand-carved metropolis provides a window into an ancient civilization. A hidden network of tombs, monuments, and elaborate religious structures are carved …
Elon Musk: The recession is here, you just don't know it yet
But I think we probably are that are in a recession and that that recession will get worse. So there’s a lot of concern about the health of the U.S. economy right now. Many economists are predicting the country will soon slip into a recession. No disrespe…
Why Coca Cola Still Spends Billions On Ads
For over a century, Coca-Cola has been selling the most successful product in the history of humankind. Since its humble beginnings in 1886, when John Pemberton first brewed a mixture of cocoa leaves and cola nuts, Coca-Cola has undergone a remarkable tra…
How To Be Alone | 4 Healthy Ways
He who sits alone, sleeps alone, and walks alone, who is strenuous and subdues himself alone, will find delight in the solitude of the forest. - The Buddha. Some people avoid solitude like the plague. Others love being alone and thrive best in solitude w…
Warren Buffett gives advice on calculating the intrinsic value of a company
This is Phil McCall from Connecticut. I wondered if you could comment on a subject I don’t think you like to talk about very much, which is intrinsic value and the evolution over the past 10 or 12 years of going to off and on, but giving us investments an…
Why Astronauts left a reflector on the Moon! (ft. MinutePhysics) - Smarter Every Day 73
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, did you know that in the 60s and 70s, when the astronauts went to the moon in the Saturn V rocket, they actually left experiments on the surface of the moon? In fact, there’s one that’s still th…